Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glass Sponges Inspire

14.11.2011
Hybrid material made of collagen fibers and silica as a possible substrate for bone tissue culture

As well as organic structures, mineral structures also play an important role in living organisms. You don’t even have to go as far as seashells or the artful silica scaffolds of diatoms; a glimpse into your own body will do. Our bones and teeth are made of the mineral hydroxyapatite.

Scientists try to imitate the processes of biomineralization in order to better repair such things as bones and teeth. A team led by Franklin R. Tay at the Georgia Health Sciences University (USA) and Ji-hua Chen at the Fourth Military Medical University (China) has now introduced a new approach in the journal Angewandte Chemie: the biomineralization of a collagen/silica hybrid material.

Biomineralization is a very complicated process that is not so easy to mimic.

The silicate precursors required for the synthesis of the cell walls of diatoms are in a stabilized form, which prevents their uncontrolled polymerization. Special proteins then control the polymerization to make the highly complex structures of the resulting scaffold. Researchers would also like to control biomineralization processes to repair damaged teeth or to make synthetic cartilage and bone tissue. In order to culture bones, scientists would like to seed osteoblasts (bone building cells) from the patient’s own body onto a substrate, where they would attach and multiply. This scaffolding would be implanted to help damaged bone, in cases of osteoporosis-induced or highly complicated fractures for example, to regenerate. Osteoblasts release collagen, calcium phosphate, and calcium carbonate as the basis for new bone material.

Collagen fibers would be an ideal substrate, but they are not solid enough for bone repair. The researchers once again turned to nature for inspiration: in glass sponges, a collagen matrix is one component of the silica scaffolding. Would it thus be possible to strengthen a collagen structure with silica (silicon dioxide)? Although many teams have previously failed in their attempts, the team led by Tay and Chen has now been successful.

They used collagen fibers as both a “mold” and a catalyst for the polymerization of the liquid phase of a silica precursor compound to make solid silica. The silica precursor is stabilized with choline to prevent an uncontrolled polymerization. This leaves enough time for the liquid precursor to fully infiltrate the space between the microfibrils of the collagen fibers before it polymerizes to form silica—one secret to the success of this new approach. After the polymerization the solid silica reflects the architecture determined by the collagen fibers. After drying, the original sponge-like, porous structure of the collagen fibers is maintained. In contrast to pure collagen, the scaffold of the hybrid compound is stable and could, the researchers hope, be used to repair bones.

Author: Franklin R. Tay, Georgia Health Sciences University, Augusta (USA), http://www.georgiahealth.edu/dentalmedicine/research/biomein/index.html
Title: Infiltration of Silica Inside Fibrillar Collagen
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105114

Franklin R. Tay | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>