Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify role of key protein in ALS and frontotemporal dementia

13.01.2010
TDP-43 causes neuronal degeneration when mislocated

Scientists at the Gladstone Institute of Neurological Disease (GIND) have identified the reason a key protein plays a major role in two neurodegenerative diseases.

In the current edition of the Journal of Neuroscience, researchers in the laboratory of GIND Associate Director Steven Finkbeiner, MD, PhD have found how the protein TDP-43 may cause the neurodegeneration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusion bodies (FTLDu). TDP-43, is the major component of protein aggregates in patients with these diseases. Mutations in the TDP-43 gene are also associated with familial forms of ALS and FTLDu.

"TDP-43 is a very exciting protein. We found that its location in the cell is a good indicator of the damage it may cause," said Finkbeiner, senior investigator and senior author on the study. "Our findings and our experimental model will allow further studies of this protein and how it results in disease."

Under normal circumstances, TDP-43 is a common protein that stays mostly in the nucleus. It has several beneficial functions, including binding DNA and RNA, inhibiting retroviruses, and helping with RNA splicing and nuclear body formation. It also shuttles mRNA to the cytoplasm.

However, in patients with ALS and FTLDu, TDP-43 is redistributed from the nucleus to the cytoplasm and forms insoluble TDP-43 aggregates in the nucleus, cytoplasm, or neuronal processes.

The Finkbeiner team developed a model system to find out how TDP-43 might be involved in neurodegenerative diseases. They used genetic engineering to add a fluorescent tag to normal or wildtype and mutant TDP-43 in rat neurons. The tag allowed them to easily see the intracellular location of the protein.

To determine the effects of the mutant protein, the researchers used an automated microscope that can examine hundreds of thousands of neurons individually over several days. With this large amount of data, they could use sophisticated statistical analyses to follow the fate of each individual neuron and determine its risk of death at any given time.

Their experimental system used primary neurons. These neurons are taken directly from an animal to a culture dish and provide the best cells for experiments because they retain many of the features of cells in the intact brain. In fact, Dr. Finkbeiner's system showed many "normal" features of TDP-43 in neurons. For example, wildtype TDP-43 was found in the nucleus in healthy neurons. Mutant TDP-43 was also found in the nucleus, but there was more of the protein in the cytoplasm.

Several neurons developed aggregates of the protein called inclusion bodies, which are often found in diseased neurons. In addition, the system can be easily manipulated by the investigators, making it a valuable tool for dissecting the biological mechanisms underlying diseases associated with TDP-43 deposition.

"We expect this system to be very helpful to other investigators," explained Finkbeiner.

The researchers found that the mutant TDP-43 was toxic to neurons and that more of it was found in the cytoplasm. Although the mutant protein formed inclusion bodies, these did not affect the risk of cell death. However, the amount of cytoplasmic TDP-43 was a strong and independent predictor of neuronal death. Using genetic manipulations, they showed that targeting wild-type TDP-43 to the cytoplasm is sufficient to recreate the toxicity associated with mutant TDP43. On the other hand, the toxic effect of the mutant protein could be blunted by preventing its export from the nucleus. It seems as if the toxicity of the mutation depends on cytoplasmic mislocalization of TDP-43.

"Our results indicate that the mutant protein is mislocalized to the cytoplasm," Finkbeiner said. "Although we don't know the underlying mechanism, the protein seems to become toxic in the cytoplasm and then causes death of the neuron."

Other members of the team were Dr. Gaia Skibinski, and Erica Korb from the Gladstone Institutes and Dr. Jane Wu and Elizabeth Rao from Northwestern University School of Medicine.

The research was supported by the National Institutes of Neurological Disorders and Stroke, the National Institute on Aging, and the Taube-Koret Center for Huntington's Disease Research.

Dr. Finkbeiner's primary affiliation is with the Gladstone Institute of Neurological Disease where his laboratory is located and his research is conducted. He is also Professor of Neurology and Physiology at the University of California, San Francisco, and Director of the Taube-Koret Center for Huntington's Disease Research. Drs. Barmada and Finkbeiner are also affiliated with the Consortium for Frontotemporal Dementia Research at the University of California, San Francisco.

About the Gladstone Institutes. The Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>