Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone Scientists identify key mechanism involved in Type 2 diabetes

29.03.2012
Findings may lead to new strategies to address insulin resistance

Scientists at the Gladstone Institutes have discovered a key protein that regulates insulin resistance—the diminished ability of cells to respond to the action of insulin and which sets the stage for the development of the most common form of diabetes. This breakthrough points to a new way to potentially treat or forestall type 2 diabetes, a rapidly growing global health problem.

In a paper being published online this week in the Proceedings of the National Academy of Sciences, researchers in the laboratory of Gladstone Investigator Katerina Akassoglou, PhD, describe an unexpected role of the p75 neurotrophin receptor in controlling how the body processes sugar. Called p75NTR, this receptor protein is usually associated with functions in neurons.

"We identified that p75NTR is a unique player in glucose metabolism," said Dr. Akassoglou, who is also an associate professor of neurology at the University of California, San Francisco, with which Gladstone is affiliated. "Therapies targeted at p75NTR may represent a new therapeutic approach for diabetes."

The pancreas makes a hormone called insulin that processes glucose, moving it from the bloodstream into the body's cells where it is used for energy. Insulin resistance is a key feature of Type 2 diabetes, in which glucose builds up in the bloodstream and the body's cells are unable to function properly. According to the Centers for Disease Control and Prevention, more than 20 million Americans have type 2 diabetes.

"Type 2 diabetes has become a very serious health problem and it is increasing at an alarming rate," said Lennart Mucke, MD, who directs the institute in which the research was conducted. "These findings provide an important new avenue for developing better therapies to combat this deadly disease—the seventh leading cause of death in the United States."

Complex signaling interactions between several different types of tissue—including fat, liver, muscle and brain—regulate glucose metabolism. Because p75NTR is found in fat and muscle tissue and participates in many important functions in the cell, Gladstone scientists hypothesized that p75NTR might also help to regulate glucose metabolism.

To study this, the researchers used mice that lacked the genes for p75NTR. They compared these mice to normal mice and discovered that those lacking p75NTR were more responsive to insulin when fed a normal diet. Second, they used some molecular biology tricks to block the action of the p75NTR protein in fat cells. This also resulted in increased glucose absorption in response to insulin. In contrast, when they caused the fat cells to make more p75NTR, glucose absorption was reduced. Additionally, the researchers found that another important regulatory molecule, Rab5, played a key role in p75NTR's impact on metabolism.

"Importantly, regulation by p75NTR enhanced insulin's effectiveness in normal lean mice on a normal diet," said Bernat Baeza-Raja, PhD, postdoctoral fellow and lead author of the study. "Because these mice already process glucose efficiently, the actions of p75NTR on glucose transport indicate a direct role of this protein in the regulation of glucose metabolism."

"Our studies of p75NTR's unanticipated role in regulating glucose metabolism suggest a new target for drug therapies," said Dr. Akassoglou. "Future work is needed to test whether this finding may translate into a potential treatment."

This study was a collaborative work between scientists at Gladstone, the University of California, San Diego (UCSD), the University of Michigan and the University of Houston. Other scientists who participated in this research at Gladstone include Natacha Le Moan, PhD, Christian Schachtrup, PhD, Dimitrios Davalos, PhD, and Eirini Vagena. Jerrold Olefsky, PhD, and Pingping Li, PhD, at UCSD were co-senior and co-first authors, respectively. Funding was provided by a variety of sources, including the National Institutes of Health, the University of California San Francisco Liver Center and Diabetes and Endocrinology Center and the R. A. Welch Foundation.

About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Diane Schrick | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>