Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify genetic link that may neutralize HIV

08.09.2008
Apobec3 Gene controls antibody response to retrovirus

Scientists from the Gladstone Institute of Virology and Immunology (GIVI) and the National Institutes of Allergy and Infectious Diseases (NIAID) have identified a gene that may influence the production of antibodies that neutralize HIV.

This new information will likely spur a new approach for making an HIV vaccine that elicits neutralizing antibodies. Neutralizing antibodies, once produced in the host, can attack and checkmate an infecting virus. The research was reported in the September 5 issue of Science.

Scientists have been striving in vain to stimulate strong protective antibodies with an HIV vaccine for years because these antibodies hold great promise for controlling HIV infection in humans. HIV is a type of virus called a "retrovirus," which copies its RNA genetic material into DNA and incorporates it into the DNA of its host.

In 1978, researchers at the National Institutes of Health (NIH) studying a similar retrovirus in mice discovered a gene called Rfv3 that influenced the production of neutralizing antibodies that allowed the animals to recover. By 1999, they had narrowed the location of Rfv3 to a relatively small region on mouse chromosome 15, but that region contained more than 60 genes. The laboratory of GIVI Director Warner C. Greene and a team of scientists from NIAID now demonstrate that Rfv3 is Apobec3, an innate immunity gene with antiretroviral activity.

"This newfound link between Apobec3 and the production of neutralizing antibodies came as a complete surprise," said Dr. Greene, senior author on the paper.

While the studies involved a different retrovirus infecting mice, the findings may extend to HIV. HIV uses one of its genes, Vif, to specifically disable human Apobec3 proteins and HIV-infected patients rarely make broadly neutralizing antibodies against this virus. This new study raises the possibility that drugs or vaccines that interfere with Vif might allow humans to naturally make better neutralizing antibody responses against HIV.

"We now have a host factor needed for the production of neutralizing antibodies that HIV targets and destroys," said Gladstone scientist Mario Santiago, PhD. "This offers a fresh perspective on how to strengthen this arm of the immune response against HIV, with direct implications for immunotherapy and vaccine development."

The scientists conducted a series of genetic experiments by mating mice with different Rfv3 and Apobec3 profiles. The researchers demonstrated that Apobec3, like Rfv3, contributes to the early control of retroviral infection in mice, and also influences specific retroviral antibody responses. In addition, they discovered that Rfv3 susceptible mouse strains that fail to make antibody responses have a natural defect in Apobec3. These results provide convincing evidence that Rfv3 and Apobec3 are the same gene.

"We set out to solve a 30-year old mystery in retrovirus biology and in the process made a discovery that might impact future development of HIV vaccines. Science really is full of unexpected twists and turns," said Dr. Greene.

The link between Apobec3 and neutralizing antibody responses becomes even more tantalizing in view of other recent studies of people who somehow resist HIV infection despite years of frequent exposure to the virus. These individuals produce a particular type of antibody recognizing the virus and genetic mapping studies of their resistance points to a chromosomal region where the human Apobec3 genes are clustered.

The research group is now poised to investigate Apobec3 differences in these individuals and is currently screening for compounds that would rescue Apobec3 function during HIV infection.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>