Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientists identify biological mechanism that plays key role in early-onset dementia

09.10.2012
Findings explain how protein deficiency contributes to neurodegenerative disease
Using animal models, scientists at the Gladstone Institutes have discovered how a protein deficiency may be linked to frontotemporal dementia (FTD)—a form of early-onset dementia that is similar to Alzheimer's disease. These results lay the foundation for therapies that one day may benefit those who suffer from this and related diseases that wreak havoc on the brain.

As its name implies, FTD is a fatal disease that destroys cells, or neurons, that comprise the frontal and temporal lobes of the brain—as opposed to Alzheimer's which mainly affects brain's memory centers in the hippocampus. Early symptoms of FTD include personality changes, such as increased erratic or compulsive behavior. Patients later experience difficulties speaking and reading, and often suffer from long-term memory loss. FTD is usually diagnosed between the ages of 40 and 65, with death occurring within 2 to 10 years after diagnosis. No drug exists to slow, halt or reverse the progression of FTD.

A new study led by Gladstone Senior Investigator Robert V. Farese, Jr., MD, offers new hope in the fight against this and other related conditions. In the latest issue of the Journal of Clinical Investigation, available today online, Dr. Farese and his team show how a protein called progranulin prevents a class of cells called microglia from becoming "hyperactive." Without adequate progranulin to keep microglia in check, this hyperactivity becomes toxic, causing abnormally prolonged inflammation that destroys neurons over time—and leads to debilitating symptoms.

"We have known that a lack of progranulin is linked to neurodegenerative conditions such as FTD, but the exact mechanism behind that link remained unclear," said Dr. Farese, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Understanding the inflammatory process in the brain is critical if we are to develop better treatments not only for FTD, but for other forms of brain injury such as Parkinson's disease, Huntington's disease and multiple sclerosis (MS)—which are likely also linked to abnormal microglial activity."

Microglia—which are a type of immune cells that reside in the CNS—normally secrete progranulin. Early studies on traumatic CNS injury found that progranulin accumulates at the injury site alongside microglia, suggesting that both play a role in injury response. So, Dr. Farese and his team designed a series of experiments to decipher the nature of the relationship between progranulin and microglia. First, the team generated genetically modified mice that lack progranulin. They then monitored how the brains of these mice responded to toxins, comparing this reaction to a control group.

"As expected, the toxin destroys neurons in both sets of mice—but the progranulin-deficient mice lost twice as many neurons as the control group," said Lauren Herl Martens, a Gladstone and UCSF graduate student and the study's lead author. "This showed us that progranulin is crucial for neuron survival. We then wanted to see whether a lack of progranulin itself would injure these cells—even in the absence of toxins."

In a petri dish, the researchers artificially prevented microglia from secreting progranulin and monitored how these modified microglia interacted with neurons. They observed that a significantly greater number of neurons died in the presence of the progranulin-deficient microglia when compared to unmodified microglia. Other experiments revealed the process' underlying mechanism. Microglia are the CNS's first line of defense. When the microglia sense toxins or injury, they trigger protective inflammation—which can become toxic to neurons if left unchecked. Dr. Farese's team discovered that progranulin works by tempering the microglia's response, thereby minimizing inflammation. Without progranulin, the microglia are unrestricted—and induce prolonged and excessive inflammation that leads to neuron damage—and can contribute to the vast array of symptoms that afflict sufferers FTD and other fatal forms of brain disease.

"However, we found that boosting progranulin levels in microglia reduced inflammation—keeping neurons alive and healthy in cell culture," explained Dr. Farese. "Our next step is to determine if this method could also work in live animals. We believe this to be a therapeutic strategy that could, for example, halt the progression of FTD. More broadly, our findings about progranulin and inflammation could have therapeutic implications for devastating neurodegenerative diseases such as Alzheimer's, Parkinson's and MS."
Other scientists who participated in this research at Gladstone include Sami Barmada, PhD, Ping Zhou, MD, Li Gan, PhD and Steve Finkbeiner, MD, PhD. Funding came from a variety of sources, including the Consortium for Frontotemporal Dementia Research, the ALS Association and the National Institutes of Health.

About the Gladstone Institutes
Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>