Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giessen scientists discover new pathways in the perception of light by plants

12.07.2012
Plant physiologists in Giessen have made a discovery that might change a lot about how we think plants respond to light.

Generally, plants adjust their growth to fit in with their local environment, light being easily the most important factor - after all, they need light to live. These responses are not controlled by photosynthesis itself, however, but by specialized photoreceptor proteins including phytochrome and phototropin which respond to red and blue light, respectively.

Whereas phototropin somehow steers growth direction in higher plants, phytochrome controls most aspects of plant development including germination, stem extension, greening and even flowering. Not surprisingly, it has been found that very many plant genes are regulated by phytochrome, and indeed most textbooks say that phytochrome works exclusively in this manner.

That cannot be true, however, because some phytochrome effects occur almost instantaneously whereas it takes at least 10 minutes to activate a gene and produce a protein. Moreover, in lower plants it is phytochrome that steers growth direction – that simply can't be done via gene regulation.

However, writing in the prestigious Proceedings of the National Academy of Sciences USA, Katharina Jaedicke and colleagues from the Institute for Plant Physiology of the Justus Liebig University in Giessen now report that phytochrome binds to phototropin at the cell membrane in both lower and higher plants. In moss filaments, the phytochrome probably uses the phototropin to steer growth towards the light source because no reaction occurs if the phototropin is missing. The association of phytochrome with phototropin in higher plants probably has a different function in relation to direction sensing, however.

The discovery is particularly remarkable because elegant experiments with polarized light carried out in the 1960's predicted that phytochrome was attached to the cell membrane – but up to now there had been no direct evidence for this. Scientists will now be able to use the new findings to design experiments which might provide vital information about how phytochrome and phototropin work and thus how plants respond to light – phenomena which are fundamental to agriculture and thus our food supply.

Source: http://www.pnas.org/content/early/2012/07/03/1120203109.abstract

Contact: Prof. Jon Hughes (jon.hughes@uni-giessen.de)

Christel Lauterbach | idw
Further information:
http://www.uni-giessen.de

Further reports about: Phototropin cell membrane photosynthesis phytochrome receptor protein

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>