Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GIANT-Coli: A novel method to quicken discovery of gene function

11.08.2008
Think researchers know all there is to know about Escherichia coli, commonly known as E. coli? Think again.

"E. coli has more than four thousand genes, and the functions of one-fourth of these remain unknown," says Dr. Deborah Siegele, a biology professor at Texas A&M University whose laboratory specializes in carrying out research using the bacterium.

Harmless E. coli strains are normally found in the intestines of many animals, including humans, but some strains can cause diseases.

Siegele and her co-workers at the University of California San Francisco, Nara Institute of Science Technology and Purdue University have devised a novel method that allows rapid and large-scale studies of the E. coli genes. The researchers believe their new method, described in the current online issue of Nature Methods, will allow them to gain a better understanding of the E. coli gene functions.

The principle behind this new method is genetic interaction. Interaction between genes produces observable effects, and this allows researchers to identify the gene functions. The research team has called their new method GIANT-Coli, short for genetic interaction analysis technology for E. coli.

The team believes that its method has great potential to quicken the progress of discovering new gene functions. The use of GIANT-Coli has already allowed researchers to identify some previously unknown genetic interactions in E. coli.

To study genetic interaction, researchers need to use what they call double-mutant strains. GIANT-Coli allows large-scale generation of these double-mutant strains (high-throughput generation). And this is the first time that a high-throughput generation method for double mutants of E. coli has been developed.

Why is it so important to know the E. coli better? "Much of what we know about other bacteria, including the more dangerous ones like Vibrio cholerae, comes from our knowledge of E. coli," says Siegele. "The E. coli is a model organism."

Siegele says that GIANT-Coli can be developed to study genetic interactions in other bacteria, and because some proteins are conserved from bacteria to humans, perhaps some of the results can even be extrapolated to gene function in humans. Moreover, Siegele points out that the method has obvious application in medicine because understanding gene functions in harmful bacteria will help in developing better treatment approaches.

Dr. Deborah Siegele | EurekAlert!
Further information:
http://www.bio.tamu.edu

Further reports about: Coli E. coli GIANT-Coli bacteria gene function genetic interactions method

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>