Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GI tract bacteria may protect against autoimmune disease

18.01.2013
Researchers show that altering gut microbes protects against disease, supporting the 'hygiene hypothesis'

Early life exposure to normal bacteria of the GI tract (gut microbes) protects against autoimmune disease in mice, according to research published on-line in the January 17 edition of Science. The study may also have uncovered reasons why females are at greater risk of autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and lupus compared to males.


The consequences of the transplanted intestinal bacteria were examined for the metabolism of mice by mass spectrometry at the Helmholtz Centre for Environmental Research (UFZ) in Leipzig.

Credit: Photo: André Künzelmann/UFZ

Researchers from The Hospital for Sick Children (SickKids) found that when female mice at high risk of autoimmune (type 1) diabetes were exposed to normal gut bacteria from adult male mice, they were strongly protected against the disease. In this type of mouse strain, more than 85% of females develop autoimmune diabetes due to strong genetic risk factors. In contrast, only 25% of the females developed the disease after they were given normal male gut microbes early in life.

"Our findings suggest potential strategies for using normal gut bacteria to block progression of insulin-dependent diabetes in kids who have high genetic risk," says principal investigator Dr. Jayne Danska. She is Senior Scientist in Genetics & Genome Biology at SickKids and Professor in the Departments of Immunology and Medical Biophysics at the University of Toronto.

A second unexpected finding was the effects of the gut microbe treatments on sex hormones. "We were surprised to see that when young female mice received normal gut microbes from adult males, their testosterone levels rose. We then showed that this hormone was essential for the gut microbe treatment to protect against the disease. It was completely unexpected to find that the sex of an animal determines aspects of their gut microbe composition, that these microbes affect sex hormone levels, and that the hormones in turn regulate an immune-mediated disease," says Dr. Danska.

She adds, "We don't know yet how transfer of male gut microbes into females increases their testosterone, or how this process protects against autoimmunity. This study opens up a new research arena to explore the clinical potential of altering the gut microbe community to prevent or treat immune-mediated diseases."

The hygiene hypothesis

The findings support the 'hygiene hypothesis,' which suggests that the dramatic increase in autoimmune and inflammatory diseases over the past 50 years results from changes in our exposure to microbes. Gut microbes are essential for normal development and training of the immune system, for extracting nutrients from our food, and for protecting us from some infectious diseases. "Our gut microbial community is an essential part of ourselves – bacterial cells outnumber human cells in our bodies by more than ten to one – and we live with them as partners," explains Dr. Danska.

Previous research has shown that children living on farms, exposed to a denser and more complex microbial environment, have fewer immune-mediated diseases compared to their village or urban-dwelling peers.

Today's publication is the first to identify a difference between normal gut microbes in males and females reared in identical conditions, and to show that transfer of male-sourced gut bacteria protects against autoimmune disease in females with high genetic risk.

"Our findings point to a direct relationship between normal gut microbe composition and prevention of autoimmune disease. From these discoveries we can move on to characterize the relationships between gut microbes, sex hormones, and ways to control unwanted immune responses," says Dr. Danska.

Implications for diabetes and other autoimmune diseases

The researchers' success in preventing type 1 diabetes from developing in high-risk mice suggests that similar approaches may be applicable in preventing and treating other immune diseases, particularly those showing a female sex bias, Dr. Danska says.

The paper is titled "Sex-specific differences in the gut microbiome drive testosterone-dependent protection from autoimmunity."

The paper's co-authors are from the University of Colorado Denver, the Helmholtz Centre in Leipzig, Germany, and the University of Bern in Switzerland. The study was funded by JDRF (Juvenile Diabetes Research Foundation), Canadian Institutes of Health Research, National institutes of Health (US), Genome Canada-Ontario Genomics Institute, and SickKids Foundation.

Publication:

Janet G. M. Markle, Daniel N. Frank, Steven Mortin-Toth, Charles E. Robertson, Leah M. Feazel, Ulrike Rolle-Kampczyk, Martin von Bergen, Kathy D. McCoy, Andrew J. Macpherson, Jayne S. Danska (2012): Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. SCIENCE, 17 January 2013, DOI: 10.1126/science.1233521

http://www.sciencemag.org/content/early/recent

For more information, please contact:

Polly Thompson
The Hospital for Sick Children
Toronto, Ontario, Canada
416-813-7654 ext. 2059
polly.thompson@sickkids.ca
Matet Nebres
The Hospital for Sick Children
Toronto, Ontario, Canada
416-813-6380
matet.nebres@sickkids.ca
Tilo Arnhold
Helmholtz Centre for Environmental Research (UFZ press office)
Leipzig, Germany
http://www.ufz.de/index.php?de=640
More Information:
Functional metaproteome of the microbiota
http://www.ufz.de/index.php?en=20158
About The Hospital for Sick Children
The Hospital for Sick Children (SickKids) is recognized as one of the world's foremost paediatric health-care institutions and is Canada's leading centre dedicated to advancing children's health through the integration of patient care, research and education. Founded in 1875 and affiliated with the University of Toronto, SickKids is one of Canada's most research-intensive hospitals and has generated discoveries that have helped children globally. Its mission is to provide the best in complex and specialized family-centred care; pioneer scientific and clinical advancements; share expertise; foster an academic environment that nurtures health-care professionals; and champion an accessible, comprehensive and sustainable child health system. SickKids is proud of its vision for Healthier Children. A Better World. For more information, please visit www.sickkids.ca.

About SickKids Centre for Research and Learning

The SickKids Centre for Research and Learning will bring together researchers from different scientific disciplines and a variety of clinical perspectives, to accelerate discoveries, new knowledge and their application to child health — a different concept from traditional research building designs. The facility will physically connect SickKids science, discovery and learning activities to its clinical operations. Designed by award-winning architects Diamond + Schmitt Inc. and HDR Inc. with a goal to achieve LEED® Gold Certification for sustainable design, the Centre will create an architectural landmark as the eastern gateway to Toronto's Discovery District. The SickKids Centre for Research and Learning is funded by a grant from the Canada Foundation for Innovation, the Government of Ontario, philanthropist Peter Gilgan and community support for the ongoing fundraising campaign. For more information, please visit www.sickkidsfoundation.com/bepartofit.

About the Helmholtz Centre for Environmental Research

At the Helmholtz Centre for Environmental Research (UFZ) scientists are researching the causes and consequences of far-reaching changes to the environment. They are concerned with water resources, biological diversity, the consequences of climate change and adaptability, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment, their effect on health, modelling and social science issues. Their guiding theme: Our research contributes to the sustainable use of natural resources and helps to secure this basis for life over the long term under the effects of global change. The UFZ employs 1,000 people in Leipzig, Halle and Magdeburg. It is financed by the federal government and the federal states of Saxony and Saxony-Anhalt.

http://www.ufz.de/

The Helmholtz Association contributes towards solving major and pressing social, scientific and economic issues with scientific excellence in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Aeronautics, Aerospace and Transport. The Helmholtz Association is Germany's largest scientific organisation with over 33,000 employees in 18 research centres and an annual budget of approximately 3.4 billion euros. Its work stands in the tradition of the naturalist Hermann von Helmholtz (1821-1894).

http://www.helmholtz.de

Tilo Arnhold | EurekAlert!
Further information:
http://www.ufz.de
http://www.helmholtz.de

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>