Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting to the root of plant simulations

15.04.2019

If you've ever tended a garden or potted a plant, you know a few simple truths about green things -- they require water and nutrients to survive and their roots are good indicators of their overall health. So we water on a regular schedule, provide for root growth and add nutrient-rich soils to ensure a balanced diet.

In nature, plants don't get that kind of care -- it may not rain often enough, the earth may lack specific nutrients and there's a lot of other vegetation vying for the same resources. While leaves and branches reach skyward to capture the sun's energy, the roots are hard at work, scrounging for those vital water and nutrient sources.


These are aerial roots of the Ficus aurea tree, in Florida.

Credit: Roser Matamala, Argonne National Laboratory

"If a plant can adjust to environmental changes by increasing its access to resources, then it has a higher chance to survive or, more importantly, to thrive."  -- Beth Drewniak, Argonne assistant climate scientist

Environmental scientists have long used computer models to understand this root-to-resource dynamic, but until recently, these simplified models employed a fixed system of roots that doesn't account for variations in resource stratification or, for that matter, the active foraging and adaption skills of roots.

A new root algorithm developed by Beth Drewniak, an assistant climate scientist with the U.S. Department of Energy's (DOE) Argonne National Laboratory, is among the first to shed more light on the ability of plants to adapt to local changes in environment.

In a paper published January 28 in the Journal of Advances in Modeling Earth Systems, Drewniak describes a dynamic root model that she introduced into the Energy Exascale Earth System Land Model (ELM), a component of the DOE's larger Energy Exascale Earth System Model (E3SM).

"The fixed approach has been popular in models because roots are hard to observe and study, making them difficult to understand," says Drewniak. "By adding a dynamic root model component, the simulation of vegetation growth can respond to changes in resources, increasing availability of those needed resources."

The model examines roots for all vegetation in ELM -- trees, shrubs, grasses and crops -- across many ecosystems and over different seasons. Where previous attempts at dynamic root models focused on either maximizing water uptake or nitrogen uptake, Drewniak's addresses both.

"Ecosystems need to respond to many types of stress, including short- or long-term events like drought or nutrient loading," says Drewniak. "If a plant can adjust to environmental changes by increasing its access to resources, then it has a higher chance to survive or, more importantly, to thrive."

For example, changes in regional climate could result in less precipitation or shifts in the frequency of precipitation, she notes. The dynamic root model simulates how plants can acclimate to the new distribution of water in the soil by allocating roots to those layers with higher water content.

The new root distribution within the model is driven by water stress -- how much water a plant needs versus how much water is available. When water stress is high, the plant focuses root growth where water is present in the soil. When the plant has ample water, root growth is concentrated where nitrogen exists. Changes to root distribution, notes Drewniak, affect a plant's water uptake, which can impact evapotranspiration, photosynthesis, productivity, and other plant dynamics.

To gauge the model's accuracy, Drewniak focused on how well the model performed compared with observations of root distribution and vegetation growth, as well as the model's sensitivity to water stress. Overall, the dynamic root model was able to capture the vertical distribution of roots fairly well and improved the simulated productivity of vegetation compared with satellite observations.

Regions in which the model does not fare well include the Amazon, African tropics and southern Asia during their dry seasons, when plants typically rely on deep roots to extract water, which is not captured well by ELM.

While the dynamic root model has already made small but important improvements to ELM, it has the potential to allow it to model a more dynamic plant root response to extreme events, such as drought, that can have a big impact on the carbon and water cycle.

"The biggest lesson learned in this study is that there is more work to be done," says Drewniak. "The model is improved because vegetation can respond to changes in the environment by foraging for water and nitrogen. But the study also revealed that there are other model development pieces necessary to fully capture vegetation response."

###

Drewniak's article, "Simulating dynamic roots in the Energy Exascale Earth System Land Model," appeared in the January 28 issue of the Journal of Advances in Modeling Earth Systems.

Funding for this research is provided by DOE's Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Brian Grabowski
bgrabowski@anl.gov
630-252-1232

 @argonne

http://www.anl.gov 

Brian Grabowski | EurekAlert!
Further information:
https://www.anl.gov/article/getting-to-the-root-of-plant-simulations
http://dx.doi.org/10.1029/2018MS001334

Further reports about: environmental changes nitrogen nutrient vegetation growth water stress

More articles from Life Sciences:

nachricht Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow
16.07.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht A human liver cell atlas
15.07.2019 | Max Planck Institute of Immunobiology and Epigenetics

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Flying Laptop satellite mission extended by two years - Successfully in orbit since July 14, 2017

16.07.2019 | Physics and Astronomy

New safer, inexpensive way to propel small satellites

16.07.2019 | Power and Electrical Engineering

UCI electrical engineering team develops 'beyond 5G' wireless transceiver

16.07.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>