Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a grip on slippery cell membranes

28.06.2016

In a paper published online by Nature Scientific Reports, biophysics teams at WPI and Penn describe how they modeled cells' ability to manipulate membranes made from oily lipids

Within each of our cells is a distribution system that uses molecular motors and filaments to move proteins, organelles, and other tiny bits of cargo along its inner framework, or cytoskeleton.


To study the forces generated by myosin-1 motors on oily membranes, researchers at Worcester Polytechnic Institute (WPI) and the University of Pennsylvania (Penn) strung a motor attached to an actin filament between two fluorescent beads, with the motor's tail resting on a sphere covered with lipids. The filament was moved side-to-side with the help of an optical trap. As the myosin-1 molecules stretched and slipped on the sphere, the researchers measured the forces applied to the sphere by the molecule.

Credit: Worcester Polytechnic Institute and University of Pennsylvania

To achieve this feat, the motors and filaments must tug on flexible membranes that surround the cargo packages, but these membranes, made of fatty molecules called lipids, are extremely slippery. Scientists have long wondered how the molecular transport machinery is able to maintain its grip.

The work is important because knowledge of the basic science of molecular motors and membrane mechanics can translate into a better understanding of cell and tissue development, wound healing, and the responses of the immune system--and how cancer cells can spread from a single tumor to other areas of the body.

... more about:
»Muscle »Polytechnic »cell membranes »proteins

Thanks to a collaborative research project at Worcester Polytechnic Institute (WPI) and the University of Pennsylvania (Penn), the answer is beginning to emerge. Led by Erkan Tüzel, PhD, associate professor of physics at WPI, and Michael Ostap, PhD, professor of physiology at the Pennsylvania Muscle Institute and Penn's Perelman School of Medicine, the team is using laboratory experiments and computational modeling to study the interactions between the motors (made from a protein called myosin-1), the filaments (made from the protein actin), and the membranes. Their findings are reported in the paper "Force Generation by Membrane-Associated Myosin-1" published online by Nature Scientific Reports.

"To maintain a grip, these myosin-1 molecules need to generate sufficient force against oily membranes," Tüzel said. "How they do that has not been clear. Now we are able to say, 'yes, the numbers make sense and the physics does work.'"

In addition to transporting cargo, cells perform a number of essential functions--from secreting proteins to dividing into two daughter cells--that require the precise manipulation of cellular membranes. The work is done by myosin motors attached to actin filaments, which must grip the membranes and pull against them. This work provides novel insights into how motors keep their grip.

Getting to the bottom of this mystery required the combined skills of Tüzel, a theoretical biophysicist who develops algorithms and computational models that simulate the behavior of complex systems, including living cells, and Ostap, an experimental biophysicist who studies the molecular motors and other structures that power cells. They began collaborating after meeting in 2014 at the Muscle and Molecular Motors Gordon Research Conference.

For the current study, Serapion Pyrpassopoulos, PhD, a researcher in Ostap's lab, strung myosin-1 molecules attached to an actin filament between two fluorescent beads. The tail of the myosin was placed on a sphere covered with lipids using techniques developed by Pyrpassopoulos.

The actin filament was moved side-to-side with the help of an optical trap. As the myosin-1 molecules stretched and slipped on the sphere, the researchers measured the forces applied to the sphere by the molecule. Tüzel and WPI graduate student Göker Arpag? took the data from those single-molecule experiments and developed a computational model that could be used to determine what it would take for myosin-1 molecules to effectively manipulate a membrane.

The model showed that a single myosin-1 molecule gripping a single lipid molecule in the membrane is not able to generate the force required to successfully tug on the membrane. In fact, the model predicts, it would take between 69 and 124 myosin-1 molecules, all attached to one actin filament and all working together, to do the job. The model also predicts that myosin-1 molecules will slip on the membrane's lipid surface at different rates. When some find an area that is easier to grip, others migrate there and hold on collectively, much like a tug-of-war team that bunches up on the rope where it gains a good foothold.

"We also saw that the slower moving myosins seem to help the faster slipping ones by giving them time to move to the area where it was easier to grip," Tüzel noted.

Tüzel and Ostap are continuing their collaboration, planning new experiments based on the predictions of the computer model. "These basic experiments and models are exciting because they provide us with the framework to start asking more physiologically relevant questions," Ostap added, "like what happens to myosin's force-generating properties when it attaches to its cellular cargo."

Media Contact

Michael Cohen
mcohen@wpi.edu
508-868-4778

 @WPI

http://www.wpi.edu 

Michael Cohen | EurekAlert!

Further reports about: Muscle Polytechnic cell membranes proteins

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>