Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German scientists question study about plastic-eating caterpillars

15.09.2017

Do the larvae of the wax moth really solve the world’s plastic problem? Sensational report of biochemical degradation of polyethylene by caterpillars not confirmed.

In April, the report of plastic bag eating caterpillars caused sensation in worldwide media. The authors around Federica Bertocchini of the University in Santander (Spain) had reported that the larvae of wax moth Galleria mellonella were able to digest polyethylene (PE).


Ground pork as an animal protein-fat-mixture on the infrared spectrometer.

photo/©: Carina Weber and Stefan Pusch, Institute of Organic Chemistry


Co-workers of Professor Dr. Till Opatz analyze ground pork as an animal protein-fat-mixture on the infrared spectrometer.

photo/©: Carina Weber and Stefan Pusch, Institute of Organic Chemistry

This polymer is mainly used for making plastic packaging and bags. Co-workers of Till Opatz, professor for Organic Chemistry at the Johannes Gutenberg University in Mainz (Germany), now critically examined the released data and experimental procedures by Bertocchini et al. and published a counterstatement. According to their report, a sufficient proof for the bio-degradation of polyethylene is missing in the first publication.

It all started when the Spanish authors had accidentally observed above named caterpillars biting holes in shopping bags. The researchers now investigated whether it is actually a matter of a biochemical digestion by enzymes and/or bacteria in the caterpillars’ digestive tract or simply a mechanical milling. In the latter case, the plastic would be excreted chemically unchanged.

The group developed an experimental procedure, in which the influence of caterpillar homogenate on a polyethylene surface was examined. The homogenate is a mass of deep frozen and squashed caterpillars, rich in proteins and lipids and with intact enzymes from the digestive system. They chose spectroscopic and microscopic evaluation methods for their analyses.

Bertocchini et al. report a decomposition of polyethylene into ethylene glycol, a potential oxidative metabolite, after the treatment of polyethylene bags with caterpillar homogenate. However, particularly the interpretation of the results obtained by infrared spectroscopy are questionable and doubts arouse about the actual detection of ethylene glycol.

The group of Opatz now demonstrated in simple control experiments which had not been carried out by the Spanish scientists that essential signals of ethylene glycol are missing in the previously published spectra. On the other hand, the reported signals of the assumed biochemical degradation products are identical to signals caused by an animal protein-fat mixture, as they would arise from caterpillar residues on the surface. To test this hypothesis, Opatz et al. treated a polyethylene surface with egg yolk and ground pork which produced highly similar spectral signatures.

The results of the German scientists were recently published as an author correspondence in Current Biology, the same scientific journal, in which the first study was published. Although the biochemical decomposition has not yet been disproven, the sensational report of plastic eating caterpillars at least appears highly doubtful in the light of these results.

Images:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_raupe_polyethylen_01.jpg
Ground pork as an animal protein-fat-mixture on the infrared spectrometer.
photo/©: Carina Weber and Stefan Pusch, Institute of Organic Chemistry

http://www.uni-mainz.de/bilder_presse/09_orgchemie_raupe_polyethylen_02.jpg
Co-workers of Professor Dr. Till Opatz analyze ground pork as an animal protein-fat-mixture on the infrared spectrometer.
photo/©: Carina Weber and Stefan Pusch, Institute of Organic Chemistry

Publication:
Carina Weber, Stefan Pusch, Till Opatz
Polyethylene bio-degradation by caterpillars?
Current Biology, 7 August 2017
DOI: 10.1016/j.cub.2017.07.004
https://www.sciencedirect.com/science/article/pii/S096098221730862X

Further Information:
Prof. Dr. Till Opatz
Institute of Inorganic Chemistry and Analytical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, Germany
phone +49 6131 39-22272 or 39-24443
fax +49 6131 39-22338
e-mail: opatz@uni-mainz.de
http://www.chemie.uni-mainz.de/OC/AK-Opatz/cv.php

Related links:
http://www.sciencedirect.com/science/article/pii/S0960982217302312?via%3Dihub („Poyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella”)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>