Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Research Foundation funds new research unit examining the microstructure of adaptive polymer gels

04.06.2019

Research alliance on "Adaptive Polymer Gels with Controlled Network Structure" will close a gap in the German research landscape

Superabsorbent materials in baby diapers and soft contact lenses seem to be worlds apart but have one thing in common: They are made of polymer gels that are permeable to certain substances.


Multi-angle light scattering instrument at the JGU Institute of Physical Chemistry, which is a key instrument for the analysis of amphiphile polymer network gels

photo/©: Georg Conrad, JGU


Another view of the multi-angle light scattering instrument at the JGU Institute of Physical Chemistry

photo/©: Georg Conrad, JGU

Soft contact lenses, for instance, must allow the delivery of ions and oxygen to the cornea, which means that they need to ensure the transport of both hydrophilic and hydrophobic molecules.

Similarly, polymer gels that swell in different fluids and that are therefore permeable to a variety of substances can potentially be used as membranes in fuel cells or in antimicrobial coatings.

However, to make this truly useful, we need to understand the nanostructure and microstructure of these polymer gels so that we know exactly what they are capable of. A new alliance of six German research institutions is going to investigate this aspect over the coming years.

The German Research Foundation (DFG) has given its approval to the new Research Unit 2811 on "Adaptive Polymer Gel with Controlled Network Structure" and will be funding it to the tune of some EUR 2 million over the next three years.

A perfect blend of the research expertise at six centers

"Up to now, there has been no DFG-funded research unit on polymers in Germany. Our group will be the first", said Professor Sebastian Seiffert. He has been Professor of Physical Chemistry of Polymers at Johannes Gutenberg University Mainz (JGU) since 2016 and is the research unit's spokesperson.

The idea for the project emerged from conversations he had with co-spokesperson Dr. Michael Lang of the Leibniz Institute for Polymer Research Dresden during the 2015 European Polymer Federation Congress. "Both of us were interested to find out what kind of heterogeneities exist in a network and how to best control and analyze them," said Lang.

"We realized very quickly that we would need a number of different measurement and simulation methods along with a wide range of tests to tackle such a complex issue, which is all the way beyond what the two of us could do.

Once we were clear about the specific requirements in terms of measurement, synthesis, and simulation that would help us understand the issue in a wider context, we were able to put together a team of seven experts."

The idea not only amazed the researchers involved. It was also warmly welcomed and emphatically recommended for funding by a DFG expert committee. "Every project within the research unit is represented at the highest level, and each of us has expertise that complements that of the others," as Seiffert pointed out with regard to the collaboration within the group.

It includes scientists from the Leibniz Institute for Polymer Research Dresden (IPF), Friedrich Schiller University Jena, the University of Stuttgart, Martin Luther University Halle-Wittenberg, and TU Darmstadt.

"Our common goal is to create polymer networks from both water- and oil-soluble building blocks and to combine these building blocks in a controllable structure," explained Seiffert. So-called amphiphilic networks of both water- and oil-soluble components can pass either one or the other liquid, which is interesting, for instance, when it comes to controlling the selective transport of active substances.

The microstructure of the polymer gel is crucial here. It is rarely homogeneous but rather exhibits irregularities like those seen in marble cake, whereby the marbling is determined by both the way the cake is made and the actual working conditions at the time.

The group believes that their first task is to obtain a fundamental and systematic understanding of how these irregularities occur in a network structure and what kind of role the production process and the condition of the sample play. All this determines the materials' properties and thus their possible uses.

Mainz is a historically established center of polymer research

There are essentially two techniques that can be used to examine and characterize amphiphilic gels under differing conditions: light scattering and multi-quantum nuclear magnetic resonance spectroscopy. Johannes Gutenberg University Mainz has the required instruments and skills to carry out the light scattering investigations.

"Mainz has been working in this field for decades and is now one of the leading centers in the world in this regard," emphasized Seiffert, noting the part the JGU Institute of Physical Chemistry has played in this success story. Halle-Wittenberg is a unique and outstanding center that masters the technique of multi-quantum nuclear magnetic resonance spectroscopy.

The experimental work will be complemented by surface analysis in Darmstadt and computer simulation of the networks at Dresden and Stuttgart, both leaders in this field. All of this work will be underpinned by the chemical expertise of Dresden and Jena, where the gel samples can be produced with the highest possible level of control.

The group is not planning to develop any new materials in the first instance, but to use the initial phase to find answers to fundamental questions. Possible further work on designing new materials may then start during a second phase of funding. The DFG Research Unit will be officially launched at a kickoff meeting in Dresden on August 15, 2019.

Images:
http://www.uni-mainz.de/bilder_presse/09_phys_chemie_dfg_f-gruppe_polymergele_01...
Multi-angle light scattering instrument at the JGU Institute of Physical Chemistry, which is a key instrument for the analysis of amphiphile polymer network gels
photo/©: Georg Conrad, JGU

http://www.uni-mainz.de/bilder_presse/09_phys_chemie_dfg_f-gruppe_polymergele_02...
Another view of the multi-angle light scattering instrument at the JGU Institute of Physical Chemistry
photo/©: Georg Conrad, JGU

Wissenschaftliche Ansprechpartner:

Professor Dr. Sebastian Seiffert
Physical Chemistry of Polymers
Institute of Physical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23887
e-mail: sebastian.seiffert@uni-mainz.de
https://www.polymer-phys.chemie.uni-mainz.de/prof-dr-s-seiffert/

Weitere Informationen:

http://www.seiffert-group.de – Seiffert Group ;
https://www.dfg.de/en/service/press/press_releases/2019/press_release_no_09/inde... – DFG press release "DFG to Fund Six New Research Units" (1 April 2019)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection
31.03.2020 | Forschungsverbund Berlin

nachricht A 'cardiac patch with bioink' developed to repair heart
31.03.2020 | Pohang University of Science & Technology (POSTECH)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>