Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Research Foundation funds new research unit examining the microstructure of adaptive polymer gels

04.06.2019

Research alliance on "Adaptive Polymer Gels with Controlled Network Structure" will close a gap in the German research landscape

Superabsorbent materials in baby diapers and soft contact lenses seem to be worlds apart but have one thing in common: They are made of polymer gels that are permeable to certain substances.


Multi-angle light scattering instrument at the JGU Institute of Physical Chemistry, which is a key instrument for the analysis of amphiphile polymer network gels

photo/©: Georg Conrad, JGU


Another view of the multi-angle light scattering instrument at the JGU Institute of Physical Chemistry

photo/©: Georg Conrad, JGU

Soft contact lenses, for instance, must allow the delivery of ions and oxygen to the cornea, which means that they need to ensure the transport of both hydrophilic and hydrophobic molecules.

Similarly, polymer gels that swell in different fluids and that are therefore permeable to a variety of substances can potentially be used as membranes in fuel cells or in antimicrobial coatings.

However, to make this truly useful, we need to understand the nanostructure and microstructure of these polymer gels so that we know exactly what they are capable of. A new alliance of six German research institutions is going to investigate this aspect over the coming years.

The German Research Foundation (DFG) has given its approval to the new Research Unit 2811 on "Adaptive Polymer Gel with Controlled Network Structure" and will be funding it to the tune of some EUR 2 million over the next three years.

A perfect blend of the research expertise at six centers

"Up to now, there has been no DFG-funded research unit on polymers in Germany. Our group will be the first", said Professor Sebastian Seiffert. He has been Professor of Physical Chemistry of Polymers at Johannes Gutenberg University Mainz (JGU) since 2016 and is the research unit's spokesperson.

The idea for the project emerged from conversations he had with co-spokesperson Dr. Michael Lang of the Leibniz Institute for Polymer Research Dresden during the 2015 European Polymer Federation Congress. "Both of us were interested to find out what kind of heterogeneities exist in a network and how to best control and analyze them," said Lang.

"We realized very quickly that we would need a number of different measurement and simulation methods along with a wide range of tests to tackle such a complex issue, which is all the way beyond what the two of us could do.

Once we were clear about the specific requirements in terms of measurement, synthesis, and simulation that would help us understand the issue in a wider context, we were able to put together a team of seven experts."

The idea not only amazed the researchers involved. It was also warmly welcomed and emphatically recommended for funding by a DFG expert committee. "Every project within the research unit is represented at the highest level, and each of us has expertise that complements that of the others," as Seiffert pointed out with regard to the collaboration within the group.

It includes scientists from the Leibniz Institute for Polymer Research Dresden (IPF), Friedrich Schiller University Jena, the University of Stuttgart, Martin Luther University Halle-Wittenberg, and TU Darmstadt.

"Our common goal is to create polymer networks from both water- and oil-soluble building blocks and to combine these building blocks in a controllable structure," explained Seiffert. So-called amphiphilic networks of both water- and oil-soluble components can pass either one or the other liquid, which is interesting, for instance, when it comes to controlling the selective transport of active substances.

The microstructure of the polymer gel is crucial here. It is rarely homogeneous but rather exhibits irregularities like those seen in marble cake, whereby the marbling is determined by both the way the cake is made and the actual working conditions at the time.

The group believes that their first task is to obtain a fundamental and systematic understanding of how these irregularities occur in a network structure and what kind of role the production process and the condition of the sample play. All this determines the materials' properties and thus their possible uses.

Mainz is a historically established center of polymer research

There are essentially two techniques that can be used to examine and characterize amphiphilic gels under differing conditions: light scattering and multi-quantum nuclear magnetic resonance spectroscopy. Johannes Gutenberg University Mainz has the required instruments and skills to carry out the light scattering investigations.

"Mainz has been working in this field for decades and is now one of the leading centers in the world in this regard," emphasized Seiffert, noting the part the JGU Institute of Physical Chemistry has played in this success story. Halle-Wittenberg is a unique and outstanding center that masters the technique of multi-quantum nuclear magnetic resonance spectroscopy.

The experimental work will be complemented by surface analysis in Darmstadt and computer simulation of the networks at Dresden and Stuttgart, both leaders in this field. All of this work will be underpinned by the chemical expertise of Dresden and Jena, where the gel samples can be produced with the highest possible level of control.

The group is not planning to develop any new materials in the first instance, but to use the initial phase to find answers to fundamental questions. Possible further work on designing new materials may then start during a second phase of funding. The DFG Research Unit will be officially launched at a kickoff meeting in Dresden on August 15, 2019.

Images:
http://www.uni-mainz.de/bilder_presse/09_phys_chemie_dfg_f-gruppe_polymergele_01...
Multi-angle light scattering instrument at the JGU Institute of Physical Chemistry, which is a key instrument for the analysis of amphiphile polymer network gels
photo/©: Georg Conrad, JGU

http://www.uni-mainz.de/bilder_presse/09_phys_chemie_dfg_f-gruppe_polymergele_02...
Another view of the multi-angle light scattering instrument at the JGU Institute of Physical Chemistry
photo/©: Georg Conrad, JGU

Wissenschaftliche Ansprechpartner:

Professor Dr. Sebastian Seiffert
Physical Chemistry of Polymers
Institute of Physical Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23887
e-mail: sebastian.seiffert@uni-mainz.de
https://www.polymer-phys.chemie.uni-mainz.de/prof-dr-s-seiffert/

Weitere Informationen:

http://www.seiffert-group.de – Seiffert Group ;
https://www.dfg.de/en/service/press/press_releases/2019/press_release_no_09/inde... – DFG press release "DFG to Fund Six New Research Units" (1 April 2019)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>