Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

George Mason Research Team Uncovers New Factor in HIV Infection

25.08.2011
Building off previous findings, HIV researchers hope discovery will aid new therapies

A George Mason University researcher team has revealed the specific process by which the HIV virus infects healthy T cells—a process previously unknown. The principal investigator, HIV researcher Yuntao Wu, says he hopes this breakthrough will start a new line on inquiry into how researchers can use this knowledge to create drugs that could limit or halt HIV infection.

Wu, a professor of molecular and microbiology at Mason, published these findings in an April 2011 edition of the Journal of Biological Chemistry, along with researchers Paul J. Vorster, Jia Guo, Alyson Yoder, Weifeng Wang, Yanfang Zheng, Dongyang Yu and Mark Spear from Mason's National Center for Biodefense and Infectious Diseases and the Department of Molecular and Microbiology and Xuehua Xu from Georgetown University School of Medicine's Department of Oncology.

This paper outlined a new understanding on how T cells—which are the target cells that the HIV virus infects—move and migrate when hijacked by the virus.

"The discovery adds to our understanding of how HIV initiates the infection of human T cells, which leads to their eventual destruction and the development of AIDS," Wu says.

Researchers and doctors have known for some time that the HIV virus, rather than directly killing healthy T cells, actually hijacks them. This eventually leads to their destruction. So the virus essentially turns the infected T cells (also known as CD4T cells or helper T cells) into a factory for creating even more HIV. Learning more about how the cells are infected could be a key step toward figuring out how to stop infection altogether.

Wu's latest discovery builds upon his previous work, published in the journal Cell in 2008, which described the basic process of how HIV infects T cells. After discovering that cofilin—a protein used to cut through a cell's outer layer, or cytoskeleton—is involved in HIV infection, Wu's new research provides the detailed framework for this process.

This new factor is called LIM domain kinase, or LIMK. The researchers discovered that LIMK triggers a cell to move, almost acting like a propeller. This cell movement is essential for HIV infection. This discovery marks the first time that a research team has uncovered the involvement of LIMK in HIV infection.

Building upon these results, the researchers then used a drug to trigger similar LIMK activation and found that it increased infection of T cells. Of course, the researchers ultimately want to decrease the infection of T cells—so they worked backwards and found something very promising.

"When we engineered the cell to inhibit LIMK activity, the cell became relatively resistant to HIV infection," says Wu. In other words, the researchers engineered human T cells that were not easily infected by HIV. This finding suggests that, in the future, drugs could be developed based on LIMK inhibition.

And while there are currently no medical drugs available to inhibit LIMK, Wu hopes this is a developing area in potential new therapeutic targets. One advantage of using this kind of therapy over the current medication available to those with HIV is that it's more difficult for the HIV virus to generate resistance to treatment, Wu explains.

Wu's team continues its work on decoding this complicated process, and he stresses that there is still much to be done.

"These findings are certainly exciting, and are an emerging research field that we are proud to have established three years ago with the publication of our Cell paper," he says. "We will continue to study the molecular details and to use those discoveries to develop new diagnostic and therapeutic tools to monitor and treat HIV-mediated CD4 T cell dysfunction and depletion."

Leah Fogarty | EurekAlert!
Further information:
http://www.gmu.edu

Further reports about: HIV HIV infection HIV virus Infection LIMK T cells cell death virus infects

More articles from Life Sciences:

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

nachricht How do muscles know what time it is?
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

Researchers discover link between magnetic field strength and temperature

21.08.2018 | Physics and Astronomy

IHP technology ready for space flights

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>