Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gentle cancer treatment using nanoparticles works

03.08.2016

Cancer treatments based on laser irridation of tiny nanoparticles that are injected directly into the cancer tumor are working and can destroy the cancer from within. Researchers from the Niels Bohr Institute and the Faculty of Health Sciences at the University of Copenhagen have developed a method that kills cancer cells using nanoparticles and lasers. The treatment has been tested on mice and it has been demonstrated that the cancer tumors are considerably damaged. The results are published in the scientific journal, Scientific Reports.

Traditional cancer treatments like radiation and chemotherapy have major side affects, because they not only affect the cancer tumors, but also the healthy parts of the body. A large interdisciplinary research project between physicists at the Niels Bohr Institute and doctors and human biologists at the Panum Institute and Rigshospitalet has developed a new treatment that only affects cancer tumors locally and therefore is much more gentle on the body.


The images show PET scans of a mouse with a large tumor (by the white arrow). The tumor is treated with nanoparticles, which are injected directly into the tumor and are then flashed with near infrared laser light. The laser light heats the nanoparticles, thus damaging or killing the cancer cells (red arrows).

(Credit: Kamilla Nørregaard and Jesper Tranekjær Jørgensen, Panum Inst.)

The project is called Laser Activated Nanoparticles for Tumor Elimination (LANTERN). The head of the project is Professor Lene Oddershede, a biophysicist and head of the research group Optical Tweezers at the Niels Bohr Institute at the University of Copenhagen in collaboration with Professor Andreas Kjær, head of the Cluster for Molecular Imaging, Panum Institute.

After experimenting with biological membranes, the researchers have now tested the method on living mice. In the experiments, the mice are given cancer tumors of laboratory cultured human cancer cells.

"The treatment involves injecting tiny nanoparticles directly into the cancer. Then you heat up the nanoparticles from outside using lasers. It is a strong interaction between the nanoparticles and the laser light, which causes the particles to heat up. What then happens is that the heated particles damage or kill the cancer cells," explains Lene Oddershede.

Design and effect

The small nanoparticles are between 80 and 150 nanometers in diameter (a nanometer is a millionth of a millimeter). The tested particles consist of either solid gold or a shell structure consisting of a glass core with a thin shell of gold around it. Some of the experiments aimed to find out which particles are most effective in reducing tumors.

"As physicists we have great expertise in the interaction between light and nanoparticles and we can very accurately measure the temperature of the heated nanoparticles. The effectiveness depends on the right combination between the structure and material of the particles, their physical size and the wavelength of the light," explains Lene Oddershede.

The experiments showed that the researchers got the best results with nanoparticles that were 150 nanometers in size and consisted of a core of glass coated with gold. The nanoparticles were illuminated with near-infrared laser light, which is the best at penetrating through the tissue.

In contrast to conventional radiation therapy, the near-infrared laser light causes no burn damage to the tissue that it passes through. Just an hour after the treatment, they could already directly see with PET scans that the cancer cells had been killed and the effect continued for at least two days after the treatment.

"Now we have proven that the method works. In the longer term, we would like the method to work by injecting the nanoparticles into the bloodstream, where they end up in the tumors that may have metastasized. With the PET scans we can see where the tumors are and irridate them with lasers, while also effectively assessing how well the treatment has worked shortly after the irradiation. In addition, we will coat the particles with chemotherapy, which is released by the heat and which will also help kill the cancer cells," explains Lene Oddershede.

###

Contact:

Lene Broeng Oddershede
Professor, head of the Danish National Research Foundation Center
StemPhys head of the research group Optical Tweezers at the Niels Bohr Institute
University of Copenhagen
Tel. 45-2494-2534
Email: oddershede@nbi.dk

Andreas Kjær
Professor, head of the Cluster for Molecular Imaging
Panum Institute
University of Copenhagen
45-3532-7504
akjaer@sund.ku.dk

Media Contact

Gertie Skaarup
skaarup@nbi.dk
45-28-75-06-20

http://www.nbi.ku.dk/english/press_and_media/ 

Gertie Skaarup | EurekAlert!

Further reports about: Chemotherapy Nanoparticles PET PET scans cancer cells cancer tumors nanometers scans tumors

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>