Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome sequence of fuel-producing alga announced

11.05.2017

The genome of the fuel-producing green microalga Botryococcus braunii has been sequenced by a team of researchers led by a group at Texas A&M AgriLife Research.

The report, in Genome Announcements, comes after almost seven years of research, according to Dr. Tim Devarenne, AgriLife Research biochemist and principal investigator in College Station.


The genome of Botryococcus braunii, being studied for its potential for biofuel by Texas A&M AgriLife

(Texas A&M AgriLife Research photo by Kathleen Phillips)

In addition to sequencing the genome, other genetic facts emerged that ultimately could help his team and others studying this green microalga further research toward producing algae and plants as a renewable fuel source.

"This alga is colony-forming, which means that a lot of individual cells grow to form a colony. These cells make lots of hydrocarbons and then export them into an extracellular matrix for storage," Devarenne said. "And these hydrocarbons can be converted into fuels - gasoline, kerosene and diesel, for example, the same way that one converts petroleum into these fuels."

Devarenne pointed to previous studies showing that hydrocarbons from B. braunii have long been associated with petroleum deposits, indicating that over geologic time the alga has coincided with and contributed to the formation of petroleum deposits.

"Essentially, if we were to use the hydrocarbon oils from this alga to be a renewable fuel source, there would be no need to change any kind of infrastructure for making the fuel. It could be put right into the existing petroleum processing system and get the same fuels out of it," he said.

Devarenne said his lab wants to understand not so much how to make fuel, but rather how the alga makes these hydrocarbons, what genes and enzymes are involved and how they function.

"Once we understand that, maybe we can manipulate the alga to make more oil or specific types of oil or maybe we can transfer those genes into other photosynthetic organisms to have them make the oil instead of the alga," said Devarenne, whose lab in 2016 announced the discovery of the enzyme used by the algae to produce hydrocarbons.

That's why sequencing the genome was important, he said, because it will help identify all the genes and enzymes in the genome needed for hydrocarbon production and control of this production.

And it isn't easy. Sequencing the genome means isolating all the DNA from the nucleus of the cell, sequencing it into small fragments and then assembling it back together into a complete genome. Think of a 166 million-piece jigsaw puzzle, given that the size of the B. braunii genome is estimated to be about 166 million bases, he said.

Devarenne said that because only portions of the B. braunii genome in this report are "spelled out," so to speak, it is considered a draft genome, or first attempt at assembling all the pieces.

"It's not perfect, but it's still very usable and valuable to the other researchers who are studying this alga," he said. His own lab plans to do a more in-depth analysis and compare it to other known algae and land plant genomes so as to see what's unique and similar.

Along with the sequencing, Devarenne's study found that there are about 18,500 genes in the B. braunii genome and there are portions of genes called untranslated regions that are very long. These regions are not formed into proteins but are rather used for regulatory purposes.

"They can be several thousand base pairs long, whereas in most organisms those regions may be only a couple hundred base pairs long," he said of the untranslated regions. "We don't know what that's about yet."

He said the B. braunii genome has been very challenging to assemble because of lots of repetitive sequences in it.

"Assembling the genome is not a trivial process at all," Devarenne explained. "We send DNA to be sequenced by the Joint Genome Institute, which is part of the U.S. Department of Energy, and they sequence it in lots of very small fragments. These fragments of DNA may be anywhere from 150 to 300 base pairs long. So imagine if we have 166 million bases in our genome, and it is sent back to us in little fragments that have to be assembled back together to arrive at 166 million bases. We used the Texas A&M Supercomputer Center to help."

As more gaps are filled in, he said, a more complete genome will emerge, and that will help researchers dive deeper into the biochemical processes in this alga.That information will then help them understand how and why the organism makes hydrocarbons in very high quantities, how that process is regulated and what the particular biosynthetic pathways are used to make the hydrocarbons.

"Just like the human genome has been sequenced but isn't fully understood, there is still a lot to study. It's really a never-ending process," Devarenne said.

The paper can be viewed at http://genomea.asm.org/content/5/16/e00215-17.full.pdf.

Media Contact

Kathleen Phillips
ka-phillips@tamu.edu
979-845-2872

 @texasagwriter

http://today.agrilife.org 

Kathleen Phillips | EurekAlert!

More articles from Life Sciences:

nachricht A new 'cool' blue
17.01.2020 | American Chemical Society

nachricht Neuromuscular organoid: It’s contracting!
17.01.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

A new 'cool' blue

17.01.2020 | Life Sciences

EU-project SONAR: Better batteries for electricity from renewable energy sources

17.01.2020 | Power and Electrical Engineering

Neuromuscular organoid: It’s contracting!

17.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>