Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome research shows that the body controls the integrity of heritable genomes

24.07.2019

New findings prove that somatic cells of the roundworm C. elegans influence heredity, challenging established concepts of genetic inheritance / Publication in ‘Developmental Cell’

Scientists at the CECAD Cluster of Excellence in Aging Research of the University of Cologne have discovered that body cells which are in direct contact with the germ cells in the nematode Caenorhabditis elegans are responsible for controlling the stability of the genome in primordial germ cells (PGCs).


All germ cells, including sperm and eggs, originate from primordial germ cells that form during early embryo development.

Professor Dr. Björn Schumacher and his team at the UoC’s Institute for Genome Stability in Aging and at CECAD discovered that somatic niche cells that surround the PGCs control their response to DNA damage. The study ‘Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells,’ has now been published in ‘Developmental Cell’.

For more than hundred years, inheritance of genetic information was thought to be autonomously controlled by the germ cells, explaining why acquired traits cannot be genetically inherited.

Scientists believed that mutations occurring only in germ cells were responsible for any heritable genetic changes – be it during evolution or as cause of genetic disorders. Schumacher and his team now challenge this assertion.

The DNA of an organism constantly gets damaged. Not only environmental influences, but also by-products of the body’s energy metabolism damage the molecular structure of the genome in every cell. The scientists investigated how the genome integrity of PGCs is controlled.

PGCs need to survey their genomes particularly rigorously because they give rise to all sperm or eggs of the organism. Damaged PGCs are particularly dangerous because they are hereditary and can lead to serious genetic disorders. PGCs thus need to stop dividing when their genomes are damaged until the DNA is repaired.

Special niche cells are responsible for signalling to the PGCs that they need to stop dividing and repair before generating further germ cells. If they fail to do so, the PGCs might pass on dangerous mutations to the next generation.

To fulfil this important function, the niche cells are in intimate contact with the PGCs and instruct them whether to divide and generate germ cells or whether to stay inactive. ‘This means that the body is responsible for controlling the integrity of heritable genomes,’ Schumacher remarked.

‘The parental body thus has somatic control over the integrity of PGC genomes, controlling the quality of the heritable genetic information.’ Since studying PGCs in mammals is a complicated endeavour, Schumacher’s team used C. elegans as a simple animal model to shed new light on to how PGCs control the integrity of the genomes they will pass on to their offspring.

These new insights open up new perspectives for understanding inheritance and causes of infertility.

Media contact:
Professor Björn Schumacher
+49 221 478 84202
bjoern.schumacher@uni-koeln.de
Press officer:
Peter Kohl
+49 221 478 84043
pkohl@uni-koeln.de

Publication:
‘Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells.’

Ou HL, Kim CS, Uszkoreit S, Wickström SA, Schumacher B
Developmental Cell 50, 1–17, July 22, 2019. doi.org/10.1016/j.devcel.2019.06.012

Gabriele Meseg-Rutzen | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Discovery of genes involved in the biosynthesis of antidepressant
09.12.2019 | Leibniz Institute of Plant Genetics and Crop Plant Research

nachricht Scientists have spotted new compounds with herbicidal potential from sea fungus
09.12.2019 | Far Eastern Federal University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Could we cool the Earth with an ice-free Arctic?

10.12.2019 | Earth Sciences

Urban growth causes more biodiversity loss outside of cities

10.12.2019 | Ecology, The Environment and Conservation

Wie ganze Ökosysteme langfristig auf die Erderwärmung reagieren

10.12.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>