Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Mining’ Method Streamlines Discovery from Nature

12.10.2011
A newly developed method for microscopically extracting, or "mining," information from genomes could represent a significant boost in the search for new therapeutic drugs and improve science's understanding of basic functions such as how cells communicate with one another.

Analyzing marine and terrestrial samples obtained from Alaska to San Diego's La Jolla Cove, a research technique jointly created by scientists at Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego and their colleagues taps powerful laboratory instruments to trace promising chemical compounds back to their genomic roots. The method is described in the October 9 online publication of the journal Nature Chemical Biology.

Graduate student Roland Kersten developed a technique that employs mass spectrometry, a mass analyzing tool that deciphers the size and makeup of molecules, to reveal core structural details of genomes.

algae fuel

"With only very small amounts of crude sample material, the mass spectrometer is able to fragment the unknown peptide into individual amino acid building blocks, so we can then map those to the genome level," said Kersten, who works jointly in Pieter Dorrestein's laboratory at the School of Pharmacy and Brad Moore's lab at the Scripps Center for Marine Biotechnology and Biomedicine. "That provides us information about how to reassemble the molecule."

Knowing such minutiae through this genomic "mining" approach gives scientists a way to connect the natural chemicals produced by organisms back to the enzymes that construct them. These "biosynthetic pathways" are considered prized information in the search for new pharmaceuticals to treat diseases.

Using the new method, the scientists have already discovered two new classes of peptides, compounds made of amino acids that serve in functions ranging from communication to protection.

"This represents a paradigm shift in the way that natural products are discovered and characterized, and it's fundamentally different than what's been practiced for the past decades in this field," said Moore, a professor at Scripps and the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego. "This has the capability of really changing the way natural products, or simply chemicals, are discovered in nature."

Dorrestein, Moore and Kersten are working on ways to automate the process to more quickly analyze biological samples. They believe the new technique will streamline the discovery of promising natural products.

algae fuel

"We're trying to bring up the speed of discovery in chemistry," said Moore. "There's a huge amount of information that's out there and we are only scratching the surface-we'd like to dig a little deeper."

"My UC San Diego colleague Bill Gerwick often states that natural products are a part of central dogma following DNA, RNA and proteins" said Dorrestein. "I agree with Bill, natural products and related chemistries control biology yet these molecules are difficult to characterize. The tools for characterizing the molecules that control biology have not kept pace with modern science. The thought process introduced in this manuscript provides the foundation for finally bringing the fourth branch of central dogma into the realm of modern life sciences."

In addition to Kersten, Moore and Dorrestein, coauthors of the paper include Yu-Liang Yang and Yuquan Xu of the Skaggs School; Peter Cimermancic and Michael Fischbach of UC San Francisco; and Sang-Jip Nam and William Fenical of Scripps Oceanography.

The National Institutes of Health and the Beckman Foundation provided financial support for the research.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>