Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome of the brown bear is now sequenced - scientists hope to learn about adaptations to climate

12.10.2011
A research group led by Prof. Axel Janke at the Biodiversity and Climate

Research Centre (BiK-F) in Frankfurt am Main has just finished sequencing the genome of the brown bear. The work was done in collaboration the Norwegian research institute Bioforsk and the Chinese genome-sequencing institute BGI.


Male Brown Bear
Copyright: Alexander Kopatz, Bioforsk

The researchers will now compare the brown bear sequence to the recently released genome sequences of polar bear and giant panda. The brown bear genome could ultimately be the key to identify genes that are relevant for environmental adaptation.

He is truly a mighty one – the brown bear is, together with the polar bear, the world's largest living land predator. In one of the first German mammalian genome projects, its genetic make-up, the genome, has now been sequenced. The “pilot bear” as he is nicknamed, was a male brown bear from the Pasvik Valley, Northern Norway and its genome is a spark for new research on this species. One of the partners, the Chinese genome center BGI, had also recently released the genome of the polar bear. Prof. Dr. Axel Janke, BiK-F, head of the research team, says: “With the entire genome sequences of those two bears, we have an incredible resource at hand to understand the genetic basis of adaptation to different climates. The genome sequences will also prove an invaluable resource to study other aspects of bear biology, and will help us to better understand and protect those fascinating animals.”

Brown bear genome: essential reference point to understand climate adaptation in polar bear

The particular significance of the brown bear genome springs from the bear’s close relationship to the polar bear – the flagship species of climate change. Recent studies at BiK-F show that the two bears diverged from each other less than a million years ago and the species are much older than previously thought “Thus, comparing their genomes will tell much about how they managed to adapt to different climates”, as Prof. Dr. Axel Janke (BiK-F) points out: “They are a terrific study system to understand what genetic make-up allows a mammal to survive under arctic or temperate climate conditions. Comparative genomics has already taught us a lot about evolutionary processes in humans, Neanderthals and chimpanzees. Now the bears will be the second mammalian group where the whole genomes of very close relatives can be studied and our“pilot bear” will become immortal.”

The brown bear genome is just the starting point for a series of genome research projects on this species, as Janke further explains: “The entire history of the brown bear is written in its genome and it will take years to completely decipher it. Even in humans, with several complete genomes and several millions of other sequences and medical data being available, the genome research has only just begun. However, comparative genomics is immensely profiting from this field.”

The brown bear genome enables advanced migration studies

The brown bear genome will not only be useful to study climate adaption, but also for conservation aspects. “The data will allow the development of new genetic markers that are urgently needed for conservation and wildlife management”, says Dr. Hans-Geir Eiken from Norwegian Bioforsk. The institute closely monitors Scandinavian and Russian bear populations. While a number of studies have looked at maternally inherited mitochondrial DNA to study the population history and migration patterns of females, no relevant markers from the Y-chromosome are available to study male migration. The genome of the male brown bear will now enable such studies. “Many previous mammalian genomes came from females and were thus missing Y-chromosome sequences”, Dr. Eiken points out. He and his colleagues are eager to start the work, once the initial assembly and genome analyses have been completed.

A complete mammalian genome is also a rich resource for countless follow-up studies by evolutionary biologists and geneticists. For instance, mammalian genomes consist to a large part of non-coding sequences, so-called ”jumping genes” (transposable elements). Transposable elements typically account for one third to half of a mammalian genome and have a yet unknown impact on gene function, evolution and adaptation, because until now most studies looked at single loci of genes rather than whole genomes of species that are closely related.

For studying the vast amount of data and complexity of this and other questions, Janke’s BiK-F research team consists of experts in the fields of bioinformatics, population genetics and the genetics of transposable elements. Together with Bioforsk, among others, the data are currently being analyzed and the first results are expected shortly. Next to Janke and Eiken, the research is conducted by Dr. Björn Hallström, Dr. Frank Hailer, Dr. Maria Nilsson, Verena Kutschera and Vikas Kumar from BiK-F as well as Bioforsk scientists Alexander Kopatz, Dr. Oddmund Kleven and Dr. Snorre Hagen.

For further information please contact:

Prof. Dr. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Phone +49 69 79824774 or +49 69 7542 1842
email: axel.janke@senckenberg.de
and
Dr. Hans Geir Eiken
Norwegian Institute for Agricultural and Environmental Research - Svanhovd
Phone +47 99629966
email: HansGeir.Eiken@bioforsk.no
and
Dr. Snorre B. Hagen
Norwegian Institute for Agricultural and Environmental Research - Svanhovd
Phone +47 93240197
email: snorre.hagen@bioforsk.no
or
Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F), press officer
Phone +49 69 7542 1838
email: sabine.wendler@senckenberg.de
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main, Germany
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK-F) has been funded since 2008 within the context of the Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co-operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | idw
Further information:
http://www.bik-f.de
http://www.senckenberg.de

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>