Genetics underlie formation of body's back-up bypass vessels

The new knowledge could help inform the current development of what are called collaterogenic therapies – drugs or procedures that can cause new collaterals to form and enlarge before or after a person suffers tissue damage from a blocked artery in the heart, brain, or peripheral tissues.

“This has really been the holy grail in our field, how to get new collaterals to form in a tissue with few in the first place” said senior study author James E. Faber, PhD, professor of cell and molecular physiology at UNC. “Our thesis has been that if we can figure out how these endogenous bypasses are formed in the first place in healthy tissues, what mechanisms and genetic pathways drive this, and collaterals abundance varies so widely in healthy individuals, then we may have our answer.”

The results of the research, published in the August 20, 2010, issue of the journal Circulation Research, is the first to pinpoint a portion of the genome associated with variation in the density and diameter of collateral vessels.

“This may well be the seminal paper in one of the most important mysteries in vascular biology: the mechanisms controlling collateral formation in the arterial tree,” wrote Stephen Schwartz, a professor of physiology at the University of Washington, in a review of the study for Faculty 1000.

The UNC research, conducted in animal models, combined classical genetic mouse crosses with a new genomic technology called association mapping to identify the section of DNA involved, starting with the whole genome, narrowing it down to several hundreds of genes and finally landing on nine candidates on mouse chromosome 7.

The researchers are now looking at these genes to see if any one of them is responsible for variation in collateral formation. Faber says they also cannot discount the possibility that it is not genes that are the deciding factor, but rather regulatory DNA or RNA elements that also reside in that same section of the genome. Either way, Faber hopes they can discover a sequence that could one day be used to predict who is most likely to develop a severe heart attack, stroke, or peripheral limb disease so those individuals can either modify their lifestyle or receive collaterogenic drugs to acquire new and potentially life-saving collateral vessels.

The UNC research was funded by the National Institutes of Health. Study co-authors from UNC include Shiliang Wang, Hua Zhang, Xuming Dai and Robert Sealock.

Media Contact

Les Lang EurekAlert!

More Information:

http://www.med.unc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors