Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic tool helps researchers to analyse cells’ most important functions

12.04.2011
Although it has been many years since the human genome was first mapped, there are still many genes whose function we do not understand. Researchers from the University of Gothenburg, Sweden, and the University of Toronto, Canada, have teamed up to produce and characterize a collection of nearly 800 strains of yeast cells that make it possible to study even the most complicated of genes.

One common way of studying the role of genes in cells is to remove a gene and investigate the effect of the loss. Genes are very similar in both yeast and people, which is one reason why the baker’s and brewer’s yeast Saccharomyces cerevisiae has become a firm favourite with geneticists – and in yeast it is easy to make this kind of genetic change.

However, this does not work for many genes as the loss causes the cells to die. These are known as essential genes and are therefore difficult to study. This is a major problem for researchers as essential genes are often involved in crucial life processes. These essential genes are also the most well-conserved over long evolutionary distances, like between humans and yeast.

Together with researchers from the University of Toronto, Anders Blomberg and Jonas Warringer from the University of Gothenburg’s Department of Cell- and Molecular Biology have produced a collection of nearly 800 strains of yeast cells where the function of these essential genes can be studied. This new genetic tool is now being made available to other researchers.

“The trick is to use temperature-sensitive mutants for the genes you want to study,” says professor Anders Blomberg. “These mutants have amino acid changes, which make the resultant protein sensitive to higher temperatures but able to function normally at normal temperatures. And at intermediary temperatures one can set the desired activity of the mutant protein.”

The Gothenburg researchers have worked for many years on characterising the changes in yeast mutants that result from genetic changes or environmental factors automatically and on a large scale. They will continue to develop and characterize the new collection of yeast cells to facilitate the systematic analysis of the function of all essential genes.

The applications of this genetic tool are exemplified in an article published in the scientific journal Nature Biotechnology.

Bibliographic data:
Journal: Nature Biotechnology
Title: Systematic exploration of essential yeast gene function with temperature-sensitive mutants

Authors: Zhijian Li, Franco J Vizeacoumar, Sondra Bahr, Jingjing Li, Jonas Warringer, Frederick S Vizeacoumar, Renqiang Min, Benjamin VanderSluis, Jeremy Bellay, Michael DeVit, James A Fleming, Andrew Stephens, Julian Haase, Zhen-Yuan Lin, Anastasia Baryshnikova, Hong Lu, Zhun Yan, Ke Jin, Sarah Barker, Alessandro Datti, Guri Giaever, Corey Nislow, Chris Bulawa, Chad L Myers, Michael Costanzo, Anne-Claude Gingras, Zhaolei Zhang

For more information, please contact:
Anders Blomberg, professor, Department of Cell- and Molecular Biology, University of Gothenburg, tel: +46 (0)31 786 2589

anders.blomberg@cmb.gu.se

Jonas Warringer, Department of Cell- and Molecular Biology, University of Gothenburg, tel: +46 (0)31 786 3961

jonas.warringer@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.nature.com/nbt/journal/v29/n4/full/nbt.1832.html

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>