Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic research identifies novel pathway leading to myocardial infarction

11.11.2013
Starting with a severely affected family, an international research research team identified a novel mechanism leading to myocardial infarction. The work was published on November 10th in the prestigious journal Nature.

Starting with a severely affected family, a research research team led by Jeanette Erdmann, Christian Hengstenberg and Heribert Schunkert (Institut für Integrative und Experimentelle Genomik, University of Lübeck and Deutsches Herzzentrum München) identified a novel mechanism leading to myocardial infarction. Specifically, the scientists detected two mutations that jointly blocked nitric oxide signalling in platelets leading to accelerated thrombus formation.

Another variant of the same enzyme, affecting a large proportion of the population, was also found to affect coronary risk, albeit to a much lesser extend. The project was funded by the DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e. V.). The work was published on November 10th in the prestigious journal Nature.

Coronary artery disease and its sequelae myocardial infarction are among the leading causes of death worldwide. In addition to an unhealthy lifestyle, it is known for a long time that familial or inherited factors contribute to the development of these diseases. Now, an international team of 42 researchers from 36 institutions and 7 countries unravelled a novel cause of myocardial infarction in an extraordinary large German family comprising more than 23 affected family members.

“Sometimes coronary artery disease clusters in families in an apparently Mendelian pattern. Yet, the precise nature for such strong genetic susceptibility remains most often enigmatic“, explains Jeanette Erdmann from the University of Lübeck, Germany.

Next-generation sequencing made it feasible to pinpoint disease-causing mutations.

“In our case the surprising finding was that two mutations affecting the same enzyme came together in a family with an extraordinary high myocardial infarction risk“ adds Heribert Schunkert from the Deutsches Herzzentrum Munich. Jeanette Erdmann specifies: „We identified two private mutations in the functionally related genes, GUCY1A3 and CCT7. Extensive follow-up studies revealed that these genes encode proteins that work together to mediate effects following nitric oxide stimulation which, among other actions, inhibit platelet activation“.

Moreover, the team shows that this pathway is not only relevant in rare families but plays also a role in the general population.

“Overall, these data suggest a link between impaired nitric oxide signalling and myocardial infarction risk“ summarizes Christian Hengstenberg from the Deutsches Herzzentrum München. Jeanette Erdmann adds, “Furthermore, we show that it is important not only to search for one disease-causing mutation in families, but to look for two, or even three potentially interacting mutations to explain clustering of a disease in families”.

Background
The family was identified as part of the German Myocardial Infarction Family Study (GerMIFS). The aim of the GerMIFS was to analyse MI families to unravel the genetic components of this life-threatening disease. Until today the GerMIFS includes more than 7,500 probands with follow-up data of more than 10 years. An special emphasis of the research agenda of the GerMIFS is the identification and analysis of rare extended families presenting more than 5, sometimes even more than 20 affected family members. Recently, next-generation-sequencing became available which allows the identification of disease-causing genetic aberrations (so-called mutations) in such families leading to new insights into pathomechanisms.

Here, the researchers sequenced, in cooperation with colleagues at the Helmholtz-Zentrum Munich (Tim Strom and Thomas Meitinger), the complete coding regions of the genome (the so-called “exome“) of three affected cousins and looked for mutations shared by these family members and absent in healthy controls. Starting with more than 30.000 of such genetic variants the researches were left in the end with two mutations in GUCY1A3 and CCT7 encoding for proteins that actually interact functionally in an enzyme called soluble guanylyl cyclase (sGC). In fact, if both mutations were found in a family member the effect was a dysfunctional enzyme incapable of responding to nitric oxide stimulation. The effect was by far less if only one of the the mutations were found in a family member.

A subunit of the enzyme soluble guanylyl cyclase (sGC) that is well known to be activated by nitric oxide is encoded by GUCY1A. The second mutation was found in the gene CCT7 which encodes a chaperone protein required for proper folding of newly synthetized cellular proteins. In a cell-based approach, the researchers demonstrated in cooperation with cellular biologists (Frank Kaiser from the Institute of Human Genetics of the University of Lübeck and Doris Koesling from the Institute of Pharmacology and Toxicology of the University of Bochum) that lack of this chaperone protein reduces the cellular amount of sGC resulting in loss of sGC function. Thus, both proteins are required for intact nitric oxide signalling. An important target of nitric oxide signalling are platelets in which aggregation is inhibited by this intercellular messenger. These cells can be easily isolated from the blood and, indeed, were found to be non-responsive to nitric oxide stimulation due to a substantial reduction of sGC protein levels in family members caarying both mutations. Likewise, all family members carrying both mutations developed coronary disease. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.

The importance of the nitric oxide signalling pathway on the functional level was verified by a cooperation with Cor de Wit, a physiologist from the Institute of Physiology of the University of Lübeck, who demonstrated accelerated platelet aggregation in mice deficient for this critical subunit of the sGC. The finding in the mice which mimicks the situation in double mutation carriers may provide the mechanistic link between dysfunctional nitric oxide signalling and myocardial infarction since platelet aggregation and thrombus formation may be unopposed in affected individuals rendering them prone for this fatal disease.

Interestingly, genetic data of more than 30.000 MI patients and 80.000 controls pulled together from the international consortium CARDIoGRAM provide evidence that not only very rare mutations in GUCY1A3 lead to MI but also common variants in this gene increases MI risk substantially.

Title of publication:
Dysfunctional nitric oxide signalling increases risk of myocardial infarction
DOI: 10.1038/nature12722.
Funding was provided by the BMBF in the context of the NGFN-plus (Atherogenomics) and DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e. V.)

For further information, please contact:

Prof. Dr. rer. nat. Jeanette Erdmann
Institut für Integrative und Experimentelle Genomik
Universität zu Lübeck and German Center for Cardiovascular Research(DZHK), partner site Hamburg/Kiel/Lübeck
Maria-Goeppert-Str. 1
D-23562 Lübeck
Phone: +49-451-500-4857
Fax: +49-451-500-5288
E-mail: jeanette.erdmann@iieg.uni-luebeck.de
Prof. Dr. med. Heribert Schunkert
Prof. Dr. med. Christian Hengstenberg
Deutsches Herzzentrum München,Klinik für Herz- und Kreislauferkrankungen and and German Centre for Cardiovascular Research (DZHK), partner site Munich
Technische Universität München
Lazarettstraße 36
D-80636 München
Phone: +49-89-1218-4073
Fax: +49-89-1218-4013
E-mail: schunkert@dhm.mhn.de

Christine Vollgraf | idw
Further information:
http://www.dzhk.de

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>