Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic make-up of children explains how they fight malaria infection

12.09.2012
Researchers from Sainte-Justine University Hospital Center and University of Montreal have identified several novel genes that make some children more efficient than others in the way their immune system responds to malaria infection.

This world-first in integrative efforts to track down genes predisposing to specific immune responses to malaria and ultimately to identify the most suitable targets for vaccines or treatments was published in the Proceedings of the National Academy of Sciences by lead author Dr. Youssef Idaghdour and senior author Pr. Philip Awadalla, whose laboratory has been performing world-wide malaria research for the past 13 years.

"Malaria is a major health problem world-wide, with over 3 billion individuals at risk and hundreds of thousands of deaths annually, a majority of which are African children under the age of 5. Why are some children prone to infection, while others are resistant and efficiently fight the disease? These are the questions we sought to answer with our study", Idaghdour says.

However, to succeed where many other studies have failed, the team used an approach different from the classic in vitro one, where the genome is analyzed using cells grown in a laboratory. Instead, they used an in vivo approach, analyzing blood samples of children from the Republic of Benin, West Africa, collected with the help of collaborators in the city of Cotonou and the nearby village of Zinvié. "This approach allowed us to identify how the "environment" engages in an arms race to define the clinical course of the disease, in this case the environment being the number of parasites detected in the child's blood running against the genetic make-up of the infected child", Idaghdour explains.

"We used an innovative combination of technologies that assessed both genetic variation among children and the conditions in which their genes are "expressed". By doing so, we increased the power of our analysis by permitting us not only to detect the mutations, but also to capture their effect depending on how they affect genes being turned "on" or "off" in presence of the parasite", Awadalla explains. "Our approach made us successful, where million-dollar studies have failed in the past. There has never been this many genes associated with malaria discovered in one study."

This major milestone in understanding how the genetic profile affects the ability of children to cope with infection could pave the way to the development of low-cost genetic profiling tests in a not so far future. "Accurate diagnosis of the infectious agent is critical for appropriate treatment, of course. However, determining a patient's genetic predisposition to infection would allow us to be more aggressive in our treatment of patients, whether we are speaking of vaccines or preventive drugs", Awadalla says.

About the researchers

Dr. Philip Awadalla
Principal investigator, Research Centre at Sainte-Justine University Hospital Centre
Professor, Department of Pediatrics, University of Montreal
Principal investigator and scientific director, CARTaGENE
Dr. Youssef Idaghdour
Post-doctoral researcher, Research Centre at Sainte-Justine University Hospital Centre

Video: http://youtu.be/6Bc0cVflnEU

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Scientists coax proteins to form synthetic structures with method that mimics nature
15.01.2019 | University of Texas at Austin

nachricht DNA library of apoid wasps published
15.01.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

Im Focus: Mission completed – EU partners successfully test new technologies for space robots in Morocco

Just in time for Christmas, a Mars-analogue mission in Morocco, coordinated by the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI) as part of the SRC project FACILITATORS, has been successfully completed. SRC, the Strategic Research Cluster on Space Robotics Technologies, is a program of the European Union to support research and development in space technologies. From mid-November to mid-December 2018, a team of more than 30 scientists from 11 countries tested technologies for future exploration of Mars and Moon in the desert of the Maghreb state.

Close to the border with Algeria, the Erfoud region in Morocco – known to tourists for its impressive sand dunes – offered ideal conditions for the four-week...

Im Focus: Programming light on a chip

Research opens doors in photonic quantum information processing, optical signal processing and microwave photonics

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new integrated photonics platform that can...

Im Focus: Physicists uncover new competing state of matter in superconducting material

A team of experimentalists at the U.S. Department of Energy's Ames Laboratory and theoreticians at University of Alabama Birmingham discovered a remarkably long-lived new state of matter in an iron pnictide superconductor, which reveals a laser-induced formation of collective behaviors that compete with superconductivity.

"Superconductivity is a strange state of matter, in which the pairing of electrons makes them move faster," said Jigang Wang, Ames Laboratory physicist and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

 
Latest News

Scientists coax proteins to form synthetic structures with method that mimics nature

15.01.2019 | Life Sciences

Next generation photonic memory devices are light-written, ultrafast and energy efficient

15.01.2019 | Information Technology

Viennese scientists develop promising new type of polymers

15.01.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>