Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic irregularities linked to higher risk of COPD among smokers

23.03.2009
Scientists at Duke University Medical Center have discovered two genetic markers that appear to put some smokers at significantly higher risk of developing chronic obstructive pulmonary disease (COPD).

The findings come from the first-ever genome-wide association study of COPD and suggest that those who carry the markers may be able to reduce their risk if they quit smoking before the first symptoms of COPD occur.

"The public health message would probably be 'quit before it's too late,'" says David Goldstein, Ph.D., director of the Institute for Genome Sciences Center for Human Genome Variation at Duke and the senior author of the study appearing in PLoS Genetics.

Chronic obstructive pulmonary disease is one of the leading causes of death worldwide. While smoking is the biggest risk factor, there is considerable variation among those who develop the disease. Genetics plays a role, but until now, there has only been one biological marker proven to be associated with COPD – a deficit of the protein A1AT, which has also been linked to the development of lung cancer.

"But we know that A1AT deficiency appears in only 1-2 percent of people with COPD, so we were pretty sure that there had to be other genetic variants at work, as well," says Goldstein.

To discover if that hunch might prove true, Goldstein led an international team of investigators in examining the genomes of 823 people with COPD and 810 smokers without COPD in Norway. They were looking for the presence of the 100 top genetic variations already documented in individuals with COPD enrolled in the family-based International COPD Genetics Network. They then took the most frequently occurring alterations from that study and evaluated them in three additional, independent groups: patients in the U.S. National Emphysema Treatment Trial, individuals enrolled in the Boston Early-Onset COPD study and a control group from the Normative Aging Study.

The genome-wide association study revealed several genetic aberrations that might be linked to COPD. But after a series of statistical analyses, only two single letter changes in DNA - (called single nucleotide polymorphisms, SNPs, or "snips") emerged as significant. Both were located near a nicotine receptor on chromosome 15 that has already been associated with lung cancer and other respiratory disorders. The SNPs also appeared with significant frequency among members of the international COPD genetics and emphysema groups.

"We believe that smokers who have these two SNPs face a nearly two-fold increase in risk of developing COPD, when compared with those who do not have these gene variants," says Goldstein. "We also believe that these two alterations directly affect how the lungs function – that they may actually mediate the risk of developing COPD."

The authors also ran tests among those who developed COPD and those who did not to find out if there was any relationship between the variants and how much people smoked. They didn't find any association, reinforcing the notion that these variants influence risk independent of smoking behavior.

The findings represent the discovery of the first major locus contributing to COPD in the general population. While Goldstein says the discovery may well open new therapeutic windows, it may also prompt clinicians to take another look at how they assess health risk among smokers.

"While it is clear that choosing to smoke is one of the worst health decisions a person can make, we now know that choice is even worse for some people than others," Goldstein said. "Our study also suggests that familiar measures of risk such as packs per day or smoking years, while informative, tell only a part of the story. The rest of the story is all about genetics, and it is still being written."

Michelle Gailiun | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>