Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of genetic disorder found in 'dark matter' of DNA

11.11.2013
For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as 'junk DNA'

For the first time, scientists have used new technology which analyses the whole genome to find the cause of a genetic disease in what was previously referred to as "junk DNA".

Pancreatic agenesis results in babies being born without a pancreas, leaving them with a lifetime of diabetes and problems digesting food. In a breakthrough for genetic research, teams led by the University of Exeter Medical School and Imperial College London found that the condition is most commonly caused by mutations in a newly identified gene regulatory element in a remote part of the genome, which can now be explored thanks to advances in genetic sequencing.

In a study published today (November 10 2013) in Nature Genetics, the team discovered that the condition is caused by mutations in genomic "dark matter", the vast stretches of DNA that do not contain genes that accounts for 99 per cent of the human genome. Instead, it is responsible for making sure that genes are "switched on" at the right time and in the right part of the body. The effects of this region on human development is only beginning to be understood, thanks to technologies which allow scientists to analyse the whole genome – all 3 billion letters in our DNA codes.

The research was funded through the Wellcome Trust, the European Community's Seventh Framework Programme and the National Institute for Health Research (NIHR) Exeter Clinical Research Facility.

Dr Mike Weedon, lead researcher and Senior Lecturer at the University of Exeter Medical School, said: "This breakthrough delves into the 'dark matter' of the genome, which until recently, was very difficult to systematically study. Now, advances in DNA sequencing technology mean we have the tools to explore these non-protein coding regions far more thoroughly, and we are finding it has a significant impact on development and disease."

The pancreas plays an essential role in regulating levels of sugar (glucose) in the blood. It does this by the release of the hormone insulin, which is generated and released by cells known as pancreatic beta cells. It also produces enzymes to help digest and absorb food.

Pancreatic agenesis means babies have diabetes from birth and problems with digesting food which prevents weight gain. The disease is rare, but its study also helps scientists gain a better understanding of how the pancreas works, which helps shed light on research into diabetes.

Professor Andrew Hattersley, a Wellcome Trust Senior Investigator who led the Exeter team said: "This finding gives a deeper understanding to families affected by this disorder, and it also tells us more about how the pancreas develops. In the longer term, this insight could have implications for regenerative stem cell treatments for Type 1 Diabetes."

The team found six different mutations in a newly discovered PTF1A regulatory region in eleven people affected by pancreatic agenesis from across the world.

The collaboration also involved: the Institut d'Investigacions Biomèdiques August Pi I Sunyer, Spain; CIBER de Diabetes y Enfermedades Metabólicas, Spain; Universidad de Buenos Aires; Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute; Seattle Children's Hospital Research Institute; King's College London; London Centre for Paediatric Endocrinology and Metabolism, in partnership with the Great Ormond Street Hospital for Children National Health Service Trust; University College London.

Louise Vennells | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>