Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic damage in minibacteria in aphids and ants repaired by faulty copying

26.09.2008
Aphids (plant lice) and ants carry minibacteria that produce essential amino acids and vitamins. These minibacteria have very limited genetic material and many broken genes.

Now, in an article in the journal Proceedings of the National Academy of Sciences, PNAS, Uppsala researchers are presenting experimental findings that show that repeated errors in the conversion of DNA to protein save the function of the damaged genes.

Many insects, such as aphids, ants, and tse-tse flies are dependent on special minibacteria for their survival. These bacteria live isolated in special organs in the insects? bodies and are packed into their eggs to be spread to the next generation of insects. In this closed environment a great deal of genetic damage takes place, and the minibacteria?s genes are successively degraded.

Genetic damage arises during copying of the DNA string in the mother cell to the new DNA strings in the daughter cells. DNA is made up of four letters-?A, C, G, T. During copying of the same letter in a row, errors easily occur: for example, 10A can be erroneously copied as 9A or 11A or 12A. If such an error occurs in a gene, the reading frame is destroyed, and the gene loses its function. It is extremely uncommon for bacteria to have long series of the same letter in their genes. The minibacteria that live in insects, on the other hand, can surprisingly have hundreds of such regions in their genes. In several cases these regions have accumulated genetic mutations and the genes have popped out of their reading frame.

"Theoretically speaking, these damaged genes should no longer be able to function", says Siv Andersson.

In the new study, the scientists have shown that despite their damage these genes become protein. The secret lies in the fact that new errors occur during copying of DNA to RNA, so a mixture of RNA molecules with 9A, 10A, 11A, and 12A is formed. Owing to the new errors, in some cases the original damage is repaired, and the gene pops back into its proper reading frame so that protein can be created.

"The result is a robust but extremely inefficient system. The major share of the copied material is useless and will be degraded. But thanks to the small proportion that turn out right as a result of the repeated copying errors, the bacteria can survive, thereby making it possible for the aphids and ants to survive", says Siv Andersson.

These findings are of value to experiments being carried out around the world in attempts to use engineering to create minibacteria using artificial genetic material.

Anneli Waara | alfa
Further information:
http://www.pnas.org/content/early/2008/09/23/0806554105.abstract
http://www.uu.se

Further reports about: Aphids DNA Error Genetic Genetic damage RNA ants copying genetic mutation minibacteria

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>