Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Genetic biopsy’ of human eggs might help pick the best for IVF

07.10.2011
Researchers at Brown University and Women & Infants Hospital of Rhode Island have developed a way to extract information about gene expression from fertile human egg cells without hurting them. Expendable ‘polar bodies’ in the cells reflect much the same information as the eggs themselves, researchers have determined.

Given the stakes of in vitro fertilization, prospective parents and their doctors need the best information they can get about the eggs they will extract, attempt to fertilize, and implant. New research at Brown University and Women & Infants Hospital of Rhode Island has found a way to see which genes each egg cell is expressing without harming it.

As researchers learn more about how those genes affect embryo development, the new technique could ultimately give parents and doctors a preview of which eggs are likely to make the most viable embryos.

In the research, now in press in the Journal of Biological Chemistry, the team of physicians and biologists was able to sequence the transcribed genetic material, or mRNA, in egg cells and, in a scientific first, in smaller structures pinched off from them called “polar bodies.” By comparing the gene expression sequences in polar bodies and their host eggs, the researchers were able to determine that the polar bodies offer a faithful reflection of the eggs’ genetic activity.

Polar bodies allow “a natural cytoplasmic biopsy,” providing genetic information without hurting the egg cell.“We can now consider the polar body a natural cytoplasmic biopsy,” said study co-author Sandra Carson, professor obstetrics and gynecology at the Warren Alpert Medical School of Brown University and director of the Center for Reproduction and Infertility at Women & Infants Hospital.

Polar bodies are where egg cells dispense with the second copies of chromosomes that, as sex cells, they don’t need. But the polar bodies also capture a microcosm of the egg’s mRNA, the genetic material produced when genes have been transcribed and a cell is set to make proteins based on those genetic instructions.

Pairs of genes

Last year the team became the first to find mRNA in human polar bodies. Now they have transcribed it in 22 pairs of human eggs and their polar bodies, and confirmed that what is in the polar bodies is a good proxy for what is in the eggs.

Given how little mRNA is present in polar bodies, the task was not easy, said Gary Wessel, professor of biology, but through a combination of clever amplification and analysis techniques by lead author and graduate student Adrian Reich and second author Peter Klatsky, the team got it done.

“There’s no reason this should have worked, just because there was so little material,” Wessel said. “Single-cell sequencing is very challenging.”

To hedge their bets the team analyzed most of the samples in two pools of 10 cells each, for instance comparing the mRNA in 10 eggs with the mRNA in the 10 related polar bodies. But to their pleasant surprise, they were also able to sequence two individual eggs and their polar bodies directly.

What they found is that more than 14,000 genes can be expressed in the eggs. Of those, more than 90 percent of the genes detected in the polar bodies were also detected in the eggs and of the 700 most abundant genes found in the polar bodies, 460 were also among the most abundant in the eggs.

The team devised a way to get maximum information from a small amount of genetic material. “There’s no reason this should have worked.”Toward clinical use

“It seems that the polar body does reflect what is in the egg,” Carson said. “Because the egg is the major driver of the first three days of human embryo development, what we find in the polar body may give us a clue into what is happening during that time.”

But Carson and Wessel acknowledged that more research will be required to create a clinically useful tool.

Finding which genes affect embryo viability is the next major step. With the new knowledge and techniques developed in their study, the researchers said, scientists could analyze the mRNA from polar bodies of eggs that are fertilized and track the progress of the resulting embryos. Once the key genes are known, they could create fast assays to look for those genes in polar bodies so that clinicians and patients could pick the best eggs. A sufficiently developed technology could also be used for choosing which eggs to bank for later use.

“We don’t quite have the answer of what those messages are doing exactly or necessarily the purpose of them in the cell function, but that’s to come,” Carson said. “Now we have the words, but not the sentences.”

The research was funded by seed grants from the Brown University Office of the Provost, the Center of Excellence in Women’s Health of Women & Infants Hospital, and Sigma-Aldrich, a research reagent supplier.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>