Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic analyses reveal novel mutations as causes of startle disease

08.08.2012
2 separate studies identify gene defects that affect how the brain responds to startling events, sometimes with fatal consequences

Two studies published in the Journal of Biological Chemistry identify genetic mutations that play important roles in the condition commonly referred to as startle disease. Startle disease is characterized by an exaggerated response to noise and touch, which can interfere with breathing, cause catastrophic falls and even result in death.

The newly identified genetic mutations affect how the signaling molecule glycine, which is responsible for sending messages between nerve cells, is both moved around and used in these cells.

Startle disease, or hyperekplexia, emerges after birth, and while the symptoms usually diminish they sometimes continue into adulthood. The abnormal startle response is caused by glitches in glycine signaling.

Glycine is a small amino acid with various roles in the cell, one of which is to transmit inhibitory signals between nerve cells. In startle disease, defective proteins prevent cells from receiving the inhibitory signals that normally control a person's response to noise and touch. The result is the amplified, harmful response.

Startle disease is caused by mutations in multiple genes that encode proteins involved in glycine signaling. For example, one well-known cause is mutation of the glycine receptor alpha1 subunit gene.

But many cases do not involve that gene or the handful of others that have been given close scrutiny, according to Robert Harvey at University College London, one of the JBC authors. Working together with Mark Rees at the Institute of Life Science, Swansea University, another prominent cause of startle disease was discovered – mutations in the gene for a glycine transporter known as GlyT2.

Rees' group performed genetic analyses of 93 patients across the globe and identified 19 new recessive mutations in GlyT2. Experiments using molecular models and cell lines in Harvey's group showed that these mutations resulted either in the loss or reduction of glycine uptake by GlyT2.

"Our study represents the largest multicenter screening study for GlyT2 mutations in hyperekplexia to date," the authors wrote in their paper. They went on to say the work triples the number of known cases with these mutations, "firmly establishing mutations in the GlyT2 gene as a second major cause of startle disease."

In the other JBC paper, Beatriz López-Corcuera at the Universidad Autónoma de Madrid in collaboration with Cecilio Giménez and Pablo Lapunzina´s groups at the IdiPAZ-Hospital Universitario La Paz and colleagues report another novel genetic mutation in GlyT2 as the cause of startle disease in eight patients from Spain and the United Kingdom.

López-Corcuera said: "The mutation that we discovered is the first common dominant mutation in the GlyT2 gene," meaning that inheritance of a single defective copy of the gene causes disease.

The team found that the mutation hindered proper expression of the GlyT2 transporter at the cell membrane and changed how GlyT2 itself functions.

López-Corcuera explains that this GlyT2 mutation reduces glycine uptake, which decreases the amount of glycine subsequently released and ultimately hinders transmission of the inhibitory signal. López-Corcuera suggests that these results may explain the symptoms observed in the patients and "could be useful for future pharmacological approaches."

From the articles:

"A novel dominant hyperekplexia mutation Y705C alters trafficking and biochemical properties of the presynaptic glycine transporter GlyT2" by Cecilio Giménez, Gonzalo Pérez-Siles, Jaime Martínez- Villarreal, Esther Arribas-González, Esperanza Jiménez, Enrique Núñez, Jaime de Juan-Sanz, Enrique Fernández-Sánchez, Noemí García-Tardón, Ignacio Ibáñez, Valeria Romanelli, Julián Nevado, Victoria M James, Maya Topf, Seo-Kyung Chung, Rhys H Thomas, Lourdes R Desviat, Carmen Aragón, Francisco Zafra, Mark I Rees, Pablo Lapunzina, Robert J Harvey, and Beatriz López- Corcuera

Corresponding author: Beatriz López-Corcuera, Departamento de Biología Molecular, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid in Madrid, Spain; e-mail: blopez@cbm.uam.es

"Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease" by Eloisa Carta, Seo-Kyung Chung, Victoria M. James, Angela Robinson, Jennifer L. Gill, Nathalie Remy, Jean-François Vanbellinghen, Cheney J.G. Drew, Sophie Cagdas, Duncan Cameron, Frances M. Cowan, Mireria Del Toro, Gail E. Graham, Adnan Y. Manzur, Amira Masri, Serge Rivera, Emmanuel Scalais, Rita Shiang, Kate Sinclair, Catriona A. Stuart, Marina A.J. Tijssen, Grahame Wise, Sameer M. Zuberi, Kirsten Harvey, Brian R. Pearce, Maya Topf, Rhys H. Thomas, Stéphane Supplisson, Mark I. Rees and Robert J. Harvey

Corresponding authors: Robert J. Harvey, Department of Pharmacology, University College London School of Pharmacy in London, United Kingdom; email: r.j.harvey@ucl.ac.uk; Mark I. Rees, Institute of Life Science, Swansea University in Swansea, United Kingdom; email: m.i.rees@swansea.ac.uk

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Written by Danielle Gutierrez

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>