Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic 'fingerprint' shown to predict liver cancer's return

16.10.2008
Finding flows from enhanced genomic method for reading genes' activity in clinical specimens

Scientists have reached a critical milestone in the study of liver cancer that lays the groundwork for predicting the illness's path, whether toward cure or recurrence. By analyzing the tissue in and around liver tumors, an international research team has identified a kind of genetic "fingerprint" that can help predict if patients' cancers will return.

The findings appear in the October 15 advance online edition of the New England Journal of Medicine and were made possible by a large-scale method for revealing genes' activity, which the researchers show can be applied to tissues that have been chemically preserved instead of frozen. This technical triumph promises to unlock biological information within millions of clinical samples previously intractable to genomic study.

"In most hospitals and clinics, the prevailing method of storing patient tissue involves a chemical fixative, which often precludes future genome-scale analyses. That means the vast majority of patient samples have effectively been off-limits to a variety of important questions," said senior author Todd Golub, who directs the Cancer Program at the Broad Institute of MIT and Harvard and is the Charles A. Dana Investigator in Human Cancer Genetics at the Dana-Farber Cancer Institute. "Our work reveals that it is indeed possible to access this biological trove, a step we hope will bolster future genomic discoveries throughout the scientific community."

Unlike many cancers, hepatocellular carcinoma, a form of liver cancer, is often detected early. That is because in the developed world, doctors can identify and closely monitor individuals at highest risk — those with a history of liver damage due to infection or chronic alcohol abuse, for example. Yet even with early diagnosis and treatment, the disease often recurs. And that development often proves fatal. The ability to pinpoint in advance those most at risk of suffering recurring cases could improve treatment, perhaps helping doctors choose more aggressive therapies for patients whose disease is most likely to return and identifying patients whose health should be carefully followed.

Genome-scale technologies are a powerful means to help develop such predictors, particularly methods that measure the activity (or "expression") of every human gene. However, a major obstacle to applying such methods to hepatocellular carcinoma, as well as other cancers, has been the technical requirements — samples must be frozen, not preserved, or "fixed," in the chemical formalin.

An international team of researchers from the Broad Institute, Harvard Medical School, Dana-Farber Cancer Institute, Mount Sinai School of Medicine, and elsewhere came together to develop an enhanced method for measuring gene expression in formalin-fixed tissues and applied it to samples from more than 300 liver cancer patients. Their work uncovered a striking pattern — a characteristic signature of more than 180 active and inactive genes linked with increased patient survival. Interestingly, this putative predictor was discovered not within the tumors per se, but within the normal tissue surrounding them.

In the future, the telltale gene signature could help distinguish patients whose tumors are likely to return. "Our findings underscore the potential of genomic signatures to help identify treatments that will be most beneficial to individual patients," said Golub, who is also an investigator at the Howard Hughes Medical Institute.

The discovery flows from an existing gene expression method that works on formalin-fixed tissues yet extracts information on just a few hundred genes. The researchers redesigned the technique to analyze roughly 6,000 genes — a subset that yields sufficient data to either directly measure or infer the expression levels of nearly all ~20,000 human genes.

Although further work is needed before the liver cancer findings can be used in the clinic, the current study marks a key step toward accelerating genomic discoveries with medical promise. Indeed, most patient tissue banks, especially those with valuable clinical data such as disease severity and course that are so vital to retrospective studies, are built from fixed samples and up until now have been largely inaccessible to genomic analysis. "In the Boston-area hospitals alone, we estimate that there are more than one million archived samples that can be analyzed with this approach," said Golub. "There's a wealth of information waiting to be explored."

Nicole Davis | EurekAlert!
Further information:
http://www.broad.mit.edu

Further reports about: Broad Institute Cancer Genetic Genetic fingerprint Samples clinic genomic help liver cancer method

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>