Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genes for short-sightedness identified

11.02.2013
An international team of scientists led by King's College London has discovered 24 new genes that cause refractive errors and myopia (short-sightedness).

Myopia is a major cause of blindness and visual impairment worldwide, and currently there is no cure. These findings, published today in the journal Nature Genetics, reveal genetic causes of the trait, which could lead to finding better treatments or ways of preventing the condition in the future.

Thirty per cent of Western populations and up to 80 per cent of Asian people suffer from myopia. During visual development in childhood and adolescence the eye grows in length, but in myopes it grows too long, and light entering the eye is then focused in front of the retina rather than on it. This results in a blurred image. This refractive error can be corrected with glasses, contact lenses or surgery. However, the eye remains longer, the retina is thinner, and this may lead to retinal detachment, glaucoma or macular degeneration, especially with higher degrees of myopia. Myopia is highly heritable, although up to now, little was known about the genetic background.

To find the genes responsible, researchers from Europe, Asia, Australia and the United States collaborated as the Consortium for Refraction and Myopia (CREAM). They analysed genetic and refractive error data of over 45,000 people from 32 different studies, and found 24 new genes for this trait, and confirmed two previously reported genes. Interestingly, the genes did not show significant differences between the European and Asian groups, despite the higher prevelance among Asian people. The new genes include those which function in brain and eye tissue signalling, the structure of the eye, and eye development. The genes lead to a high risk of myopia and carriers of the high-risk genes had a tenfold increased risk.

It was already known that environmental factors, such as reading, lack of outdoor exposure, and a higher level of education can increase the risk of myopia. The condition is more common in people living in urban areas. An unfavourable combination of genetic predisposition and environmental factors appears to be particularly risky for development of myopia. How these environmental factors affect the newly identified genes and cause myopia remains intriguing, and will be further investigated by the consortium.

Professor Chris Hammond from the Department of Twin Research and Genetic Epidemiology at King's College London, and lead author of the paper, said: 'We already knew that myopia – or short-sightedness – tends to run in families, but until now we knew little about the genetic causes. This study reveals for the first time a group of new genes that are associated with myopia and that carriers of some of these genes have a 10-fold increased risk of developing the condition.

'Currently myopia is corrected with glasses or contact lenses, but now we understand more about the genetic triggers for the condition we can begin to explore other ways to correct it or prevent progression. It is an extremely exciting step forward which could potentially lead to better treatments or prevention in the future for millions around the world.'

Currently, possibilities to reduce progression of myopia are very limited. While one drug, called atropine, may reduce progression, it dilates the pupil and causes problems with light sensitivity and difficulty with reading. New options are necessary. Chances are good that the insights gained from this study will provide openings for development of new strategies.

NOTES TO EDITORS

Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia
Nature Genetics
Advance Online Publication DOI: 10.1038/ng.2554
A copy of the paper is available on request
CONTACT
Katherine Barnes
International PR Manager
King's College London
Tel: +44 207 848 3076
Email: katherine.barnes@kcl.ac.uk
About King's College London
King's College London is one of the top 30 universities in the world (2011/12 QS World University Rankings), and the fourth oldest in England. A research-led university based in the heart of London, King's has more than 25,000 students (of whom more than 10,000 are graduate students) from nearly 140 countries, and some 6,500 employees. King's is in the second phase of a £1 billion redevelopment programme which is transforming its estate.

King's has an outstanding reputation for providing world-class teaching and cutting-edge research. In the 2008 Research Assessment Exercise for British universities, 23 departments were ranked in the top quartile of British universities; over half of our academic staff work in departments that are in the top 10 per cent in the UK in their field and can thus be classed as world leading. The College is in the top seven UK universities for research earnings and has an overall annual income of nearly £450 million.

King's has a particularly distinguished reputation in the humanities, law, the sciences (including a wide range of health areas such as psychiatry, medicine, nursing and dentistry) and social sciences including international affairs. It has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and research that led to the development of radio, television, mobile phones and radar. It is the largest centre for the education of healthcare professionals in Europe; no university has more Medical Research Council Centres.

Katherine Barnes | EurekAlert!
Further information:
http://www.kcl.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>