Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes linked to cancer could be easier to detect with liquid lasers

01.02.2012
Using a liquid laser, University of Michigan researchers have developed a better way to detect the slight genetic mutations that might predispose a person to a particular type of cancer or other diseases.
Their results are published in the current edition of the German journal Angewandte Chemie.

This work could advance understanding of the genetic basis of diseases. It also has applications in personalized medicine, which aims to target drugs and other therapies to individual patients based on a thorough knowledge of their genetic information.

The researchers say their technique works much better than the current approach, which uses fluorescent dye and other biological molecules to find and bind to mutated DNA strands. When a patrol molecule catches one of these rogues, it emits a fluorescent beacon. This might sound like a solid system, but it's not perfect. The patrol molecules tend to bind to healthy DNA as well, giving off a background glow that is only slightly dimmer than a positive signal.

"Sometimes, we can fail to see the difference," said Xudong Fan, an associate professor in the Department of Biomedical Engineering and principal investigator on the project. "If you cannot see the difference in signals, you could misdiagnose. The patient may have the mutated gene, but you wouldn't detect it."

Researchers have developed a highly sensitive technique based on laser emission for differentiating a target DNA strand from strands that contain single base mismatches. Laser emission is used to amplify the small difference in signals that are generated by the different strands after they bind with a molecular beacon. The conversion is similar to analog-to-digital. Image: Christopher BurkeIn the conventional fluorescence technique, the signal from mutated DNA might be only a few tenths of a percent higher than the background noise. With Fan's new approach it's hundreds of times brighter.

"We found a clever way to amplify the intrinsic difference in the signals," Fan said.

He did it with a bit of backtracking.

Liquid lasers, discovered in the late '60s, amplify light by passing it through a dye, rather than a crystal, as solid-state lasers do. Fan, who works at the intersection of biomedical engineering and photonics, has been developing them for the past five years. In his unique set-up, the signal is amplified in a glass capillary called a "ring resonator cavity."

Last year, Fan and his research group found that they could employ DNA (the blueprints for life that reside in all cells) to modulate a liquid laser, or turn it on and off. His group is one of just a few in the world to accomplish this, Fan said. At the time, they didn't have a practical application in mind. Then they had an epiphany.

"We thought, 'Let's look at the laser output. Can we see what's causing the different outputs and use it to detect differences in the DNA?'" Fan said. "I had an intuition, and it turns out the output difference was huge."

The journal editors named this a "hot paper" that "advances knowledge in a rapidly evolving field of high current interest."

The paper is titled "Distinguishing DNA by Analog-to-Digital-like Conversion by Using Optofluidic Lasers." The research was funded by the National Science Foundation. The first author is Yuze Sun, a doctoral student in the Department of Biomedical Engineering. The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu

Further reports about: Biomedical DNA DNA strand Gates Foundation genes laser system

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>