Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy to treat epilepsy a step closer

25.08.2010
Current antiepileptic drugs (AEDs) have many side-effects, among others slowing down brain activity, which in turn reduces patients’ ability to react.

These side-effects could be eliminated if genes that counteract seizures could be introduced into the brain. Professor Merab Kokaia at Lund University in Sweden has obtained promising results in animal experiments.

Epilepsy is a fairly common condition, affecting around 1 in every 100 people in Sweden. It increases the risk of depression, sudden death, injury and disability. Today’s medication not only has side-effects, it is also not sufficiently effective. A large proportion of epilepsy patients are not helped by the drugs and cannot be treated with brain surgery either.

Research in recent years has shown that the brain tries to counteract seizures. One of the ways it does this is by increasing levels of a protein-like molecule called neuropeptide Y and the expression of certain receptors for it.

Both Merab Kokaia’s research group and others have previously shown that gene therapy can increase levels of neuropeptide Y in the brain. The Lund researchers are now also the first group in the world to introduce genes that increase the expression of certain receptors for neuropeptides in the brain.

“Neuropeptide Y affects many receptors on the cells in the brain. Some of these increase the risk of seizures and thus have the opposite effect to that which we want to achieve. Therefore it is not ideal to only aim for high levels of neuropeptide Y; we should also ensure that the neuropeptide activates the right receptors”, says Merab Kokaia.

He has tested the combined neuropeptide and receptor gene therapy on a rat model of epilepsy and found that the seizures were strongly suppressed. The results have recently been published in the prestigious journal BRAIN.

The genes were introduced into the animals’ brains via harmless viruses. These were injected into the specific parts of the brain that are affected by an epileptic condition.

“If the method works on humans, a single treatment would be sufficient, rather than lifelong medication. Unlike current AEDs, such treatment would also only affect the parts of the brain concerned”, explains Merab Kokaia.

In the USA the Food and Drug Administration (FDA) is now considering an application to test gene therapy for epilepsy on humans. However, this application only concerns introducing genes to increase expression of neuropeptide Y, whereas the Lund group’s findings indicate that genes that increase the expression of the right receptors would be at least as important.

The article is entitled ‘Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures’ and is available at http://brain.oxfordjournals.org/ (enter ‘Kokaia’ in the search box).

Merab Kokaia can be contacted by telephone, +46 46 222 05 47, mobile +46 706 620899, or by email, merab.kokaia@med.lu.se

Megan Grindlay | idw
Further information:
http://brain.oxfordjournals.org/
http://www.vr.se

Further reports about: AEDs Brain Activity Epilepsy antiepileptic drugs gene therapy neuropeptide Y

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>