Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy shows promise as hemophilia treatment in animal studies

03.11.2011
For the first time, researchers have combined gene therapy and stem cell transplantation to successfully reverse the severe, crippling bleeding disorder hemophilia A in large animals, opening the door to the development of new therapies for human patients.

Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine, collaborating with other institutions, report in Experimental Hematology that a single injection of genetically-modified adult stem cells in two sheep converted the severe disorder to a milder form. The journal is a publication of the Society for Hematology and Stem Cells

"A new approach to treating severe hemophilia is desperately needed," said lead author Christopher D. Porada, Ph.D., associate professor of regenerative medicine at Wake Forest Baptist. "About 75 percent of the world doesn't have access to the current treatment – therapy to replace missing clotting factors. This puts patients in most of the world at risk of severe and permanent disabilities."

Porada cautioned that challenges will need to be overcome before the treatment can be applied to humans, including that the sheep developed an immune response to the therapy that could decrease its effectiveness and duration.

There is currently no cure for the rare bleeding disorder hemophilia. People with this genetic disorder lack a protein, known as a clotting factor, needed for normal blood clotting. As a result, they may bleed for a longer time than others after an injury, as well as bleed internally, especially in joints such as the knees, ankles, and elbows. This bleeding can damage the organs and tissues and be life threatening. Even when life-threatening bleeds are prevented with replacement therapy, it doesn't prevent smaller bleeds within the joints that can cause pain and decreased mobility.

People with hemophilia A, the most common type, are missing clotting factor VIII. For the study, the researchers used a combined stem cell/gene therapy approach to increase levels of factor VIII produced by the animals.

The scientists first inserted a gene for factor VIII into engineered mesenchymal stem cells, a type of adult stem cell. The cells – acting as a carrier for the gene – were then injected into the abdominal cavity of the sheep. The scientists selected mesenchymal stem cells to carry the gene because they have the ability to migrate to sites of injury or inflammation.

In the treated animals, the cells migrated to the joints and stopped ongoing bleeding. In addition, all spontaneous bleeding events ceased, and the existing joint damage was completely reversed, restoring normal posture and gait to these crippled animals, and enabling them to resume a normal activity level.

However, a paradox of the treatment was that while the symptoms were eliminated, the sheep developed an immune response to factor VIII, suggesting that the treatment's effects would be reduced or shorter in duration. The scientists are currently working to learn why the immune response occurred and to develop strategies to prevent it.

"While preliminary, these findings could pave the way for a new therapy for hemophilia patients who experience debilitating bleeding in their joints," Porada said.

The research was supported by the National Institutes of Health.

Co-authors were Graça Almeida-Porada (senior author) and Chung-Jung Kuo , both with Wake Forest Baptist; Chad Sanada, Evan Colletti, Esmail D. Zanjani, Walter Mandeville and John Hasenau, all with the University of Nevada at Reno; Robert Moot, Aflac Cancer Center and Blood Disorders Service; Christopher Doering, Emory Children's Center Pediatrics; and H. Trent Spencer, Emory University School of Medicine.

Media Contacts: Karen Richardson, krchrdsn@wakehealth.edu, 336-716-4453 or Main Number 336-716-4587.

About the Wake Forest Institute for Regenerative Medicine

The Wake Forest Institute for Regenerative Medicine (http://www.wfirm.org) is dedicated to the discovery, development and clinical translation of regenerative medicine technologies. The institute has used biomaterials alone, cell therapies, and engineered tissues and organs for the treatment of patients with injury or disease. Institute scientists were the first in the world to engineer a replacement organ in the laboratory that was successfully implanted in patients. The Institute is based at Wake Forest Baptist Medical Center (www.wakehealth.edu), a fully integrated academic medical center located in Winston-Salem, North Carolina. The institution comprises the medical education and research components of Wake Forest School of Medicine, the integrated clinical structure and consumer brand Wake Forest Baptist Health, which includes North Carolina Baptist Hospital and Brenner Children's Hospital, the commercialization of research discoveries through the Piedmont Triad Research Park, as well a network of affiliated community based hospitals, physician practices, outpatient services and other medical facilities.

Karen Richardson | EurekAlert!
Further information:
http://www.wakehealth.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>