Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy prevents memory problems in mice with Alzheimer's disease

29.11.2010
Scientists at the Gladstone Institute of Neurological Disease (GIND) in San Francisco have discovered a new strategy to prevent memory deficits in a mouse model of Alzheimer's disease (AD).

Humans with AD and mice genetically engineered to simulate the disease have abnormally low levels of an enzyme called EphB2 in memory centers of the brain. Improving EphB2 levels in such mice by gene therapy completely fixed their memory problems. The findings will be published in the November 28 issue of the journal Nature.

In both humans and mice, learning and memory requires effective communication between brain cells called neurons. This communication involves the release of chemicals from neurons that stimulate cell surface receptors on other neurons. This important process, called neurotransmission, is impaired by amyloid proteins, which build up to abnormally high levels in brains of AD patients and are widely thought to cause the disease. But how exactly these poisonous proteins disrupt neurotransmission is unknown.

"EphB2 is a really cool molecule that acts as both a receptor and an enzyme," said Moustapha Cisse, PhD, lead author of the study. "We thought it might be involved in memory problems of AD because it is a master regulator of neurotransmission and its brain levels are decreased in the disease."

To determine if low EphB2 levels actually contribute to the development of memory problems, the investigators used gene therapy to experimentally alter EphB2 levels in memory centers of mice. Reducing EphB2 levels in normal healthy mice disrupted neurotransmission and gave them memory problems similar to those seen in AD. This finding suggests that the reduced EphB2 levels in AD brains contribute to the memory problems that characterize this condition.

"What we were most curious about, of course, was whether normalizing EphB2 levels could fix memory problems caused by amyloid proteins," said Lennart Mucke, MD, director of the GIND and senior author of the study. "We were absolutely thrilled to discover that it did."

Increasing EphB2 levels in neurons of mice engineered to produce high levels of human amyloid proteins in the brain prevented their neurotransmission deficits, memory problems and behavioral abnormalities. The scientists also discovered that amyloid proteins directly bind to EphB2 and cause its degradation, which helps explain why EphB2 levels are reduced in AD and related mouse models.

"Based on our results, we think that blocking amyloid proteins from binding to EphB2 and enhancing EphB2 levels or functions with drugs might be of benefit in AD." said Mucke. "We are excited about these possibilities and look forward to pursuing them in future studies."

Also contributing to this study were Gladstone scientists Brian Halabisky, Julie Harris, Nino Devidze, Dena Dubal, Bin-Gui Sun, Anna Orr, Gregor Lotz, Daniel H. Kim, Patricia Hamto, Kaitlyn Ho, and Gui-Qiu Yu.

The study was supported by grants from the National Institutes of Health and a fellowship from the McBean Foundation.

Lennart Mucke's primary affiliation is with the Gladstone Institute of Neurological Disease, where he is Director/Senior Investigator and where his laboratory is located and his research is conducted. He is also the Joseph B. Martin Distinguished Professor of Neuroscience and Professor of Neurology at UCSF.

Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology, and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Gary Howard | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

Further reports about: Alzheimer Disease EPHB2 GIND Gladstone UCSF amyloid proteins brain cell gene therapy memory problems mouse model

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>