Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy for hearing loss: potential and limitations

14.05.2012
Researchers can induce the generation of extra sensory hair cells in the cochlea. Mature sensory hair cells are red, while immature hair cells are green. The arrows indicate locations where hair cells are usually not found.
Regenerating sensory hair cells, which produce electrical signals in response to vibrations within the inner ear, could form the basis for treating age- or trauma-related hearing loss. One way to do this could be with gene therapy that drives new sensory hair cells to grow.

Researchers at Emory University School of Medicine have shown that introducing a gene called Atoh1 into the cochleae of young mice can induce the formation of extra sensory hair cells.

Their results show the potential of a gene therapy approach, but also demonstrate its current limitations. The extra hair cells produce electrical signals like normal hair cells and connect with neurons. However, after the mice are two weeks old, which is before puberty, inducing Atoh1 has little effect. This suggests that an analogous treatment in adult humans would also not be effective by itself.

The findings were published May 9 in the Journal of Neuroscience.

“We’ve shown that hair cell regeneration is possible in principle,” says Ping Chen, PhD, associate professor of cell biology at Emory University School of Medicine. “In this paper, we have identified which cells are capable of becoming hair cells under the influence of Atoh1, and we show that there are strong age-dependent limitations on the effects of Atoh1 by itself.”

The first author of the paper, Michael Kelly, now a postdoctoral fellow at the National Institute on Deafness and Other Communication Disorders, was a graduate student in Emory’s Neuroscience program.

Kelly and his coworkers engineered mice to turn on the Atoh1 gene in the inner ear in response to the antibiotic doxycycline. Previous experimenters had used a virus to introduce Atoh1 into the cochleae of animals. This approach resembles gene therapy, but has the disadvantage of being slightly different each time, Chen says. In contrast, the mice have the Atoh1 gene turned on in specific cells along the lining of the inner ear, called the cochlear epithelium, but only when fed doxycycline.

Young mice given doxycycline for two days had extra sensory hair cells, in parts of the cochlea where developing hair cells usually appear, and also additional locations (see accompanying image).

The extra hair cells could generate electrical signals, although those signals weren’t as strong as mature hair cells. Also, the extra hair cells appeared to attract neuronal fibers, which suggests that those signals could connect to the rest of the nervous system.

“They can generate electrical signals, but we don’t know if they can really function in the context of hearing.” Chen says. “For that to happen, the hair cells’ signals need to be coordinated and integrated.”

Although doxycycline could turn on Atoh1 all over the surface of the cochlea, extra sensory hair cells did not appear everywhere. When they removed cochleae from the mice and grew them in culture dishes, her team was able to provoke even more hair cells to grow when they added a drug that inhibits the Notch pathway.

Manipulating the Notch pathway affects several aspects of embryonic development and in some contexts appears to cause cancer, so the approach needs to be refined further. Chen says that it may be possible to unlock the age-related limits on hair cell regeneration by supplying additional genes or drugs in combination with Atoh1, and the results with the Notch drug provide an example.

“Our future goals are to develop approaches to stimulate hair cell formation in older animals, and to examine functional recovery after Atoh1 induction,” she says.

The research was supported by the National Institute on Deafness and Other Communications Disorders, the National Basic Research Program of China and the Natural Science Foundation of China.

Reference: M.C. Kelly, Q. Chang, A. Pan, X. Lin and P. Chen. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J. Neurosci. 32: 699-6710 (2012).

Quinn Eastman | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>