Gene signature for cancer stem cells may provide drug targets

“We have found that gene expression patterns in a subset of these resistant cancer cells differ from those associated with the bulk of the epithelial cells in the tumor. These patterns resemble expression patterns more closely associated with cells with a mesenchymal (a form of connective tissue) phenotype (or appearance),” said Dr. Jenny Chang (http://www.bcm.edu/breastcenter/?PMID=10728), medical director of the Sue and Lester Smith Breast Center (http://www.bcm.edu/cancercenter/) at BCM and a professor of medicine. Chang is a senior author of the paper along with Drs. Michael Lewis and Jeffrey M. Rosen, both of BCM and the Dan L. Duncan Cancer Center (http://www.bcm.edu/cancercenter/) as well as the Breast Center.

In a previous paper, the authors showed that after patients received conventional chemotherapy, the remaining tumor contained a higher percentage of tumor-initiating cells, also known as breast cancer stem cells. These remaining tumor-initiating cells were therefore largely resistant to conventional treatments.

They found that gene expression patterns in these chemoresistant cells represented a tumor-initiating gene signature, which was not only more easily detectable in a newly-defined breast cancer subtype called “claudin-low”, but also enriched in human breast tumors after they had been treated with anti-cancer drugs that target the signals of hormones, said Chang. They also found that genes associated with the mesenchymal cell phenotype were increased in breast tumors after hormone treatment.

“This study supports a growing body of evidence that there is a particular subpopulation of cells in breast cancer that may be responsible for disease recurrence, resistance to treatment, and perhaps metastasis (cancer spread),” said Chang.

In the future, she said, the group will be looking at ways to use the gene signature they have identified to develop drugs that can combine with conventional therapy to eradicate all populations of cells within tumors.

Others who took part in this research include Chad J. Creighton, Xiaoxian Li, Melissa Landis, Helen Wong, Angel Rodriguez, Jason I. Herschkowitz, Xiamoei Zhang, Anne Pavlick, M. Carolina Gutierrez, and Susan G. Hilsenbeck, all of the Dan L. Duncan Cancer Center at BCM; J. Michael Dixon, Lorna Renshaw, Alexey A. Larionov and Dana Faratian of Western General Hospital in Edinburgh, UK;Veronique M. Neumeister, Ashley Sjohund, David L. Rimm and Xiaping He, all of Yale University School of Medicine in New Haven, CT; Cheng Fan and Charles M. Perou, both of Unversity of North Carolina at Chapel Hill.

Funding for this study came from the Breast Cancer Research Fundation, the Helis Foundation, the National Cancer Institute Breast Cancer Special Program of Research Excellence, the National Cancer Institute, the Breakthrough Research Unit in Edinburgh, Cancer Research UK, the National Institutes of Health, Glaxo Smith Kline and the U.S. Army Medical Research and Materiel Command.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab or www.bcm.edu/news.

Media Contact

Glenna Picton EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors