Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene repair technique promises advances in regenerative medicine

13.08.2013
Using human pluripotent stem cells and DNA-cutting protein from meningitis bacteria, researchers from the Morgridge Institute for Research and Northwestern University have created an efficient way to target and repair defective genes.

Writing yesterday (Monday, Aug. 12, 2013) in the Proceedings of the National Academy of Sciences, the team reports that the novel technique is much simpler than previous methods and establishes the groundwork for major advances in regenerative medicine, drug screening and biomedical research.

Zhonggang Hou of the Morgridge Institute’s regenerative biology team and Yan Zhang of Northwestern University served as first authors on the study; James Thomson, director of regenerative biology at the Morgridge Institute, and Erik Sontheimer, professor of molecular biosciences at Northwestern University, served as principal investigators.

“With this system, there is the potential to repair any genetic defect, including those responsible for some forms of breast cancer, Parkinson’s and other diseases,” Hou said. “The fact that it can be applied to human pluripotent stem cells opens the door for meaningful therapeutic applications.”

Zhang said the Northwestern University team focused on Neisseria meningitidis bacteria because it is a good source of the Cas9 protein needed for precisely cleaving damaged sections of DNA.

“We are able to guide this protein with different types of small RNA molecules, allowing us to carefully remove, replace or correct problem genes,” Zhang said. “This represents a step forward from other recent technologies built upon proteins such as zinc finger nucleases and TALENs.”

These previous gene correction methods required engineered proteins to help with the cutting. Hou said scientists can synthesize RNA for the new process in as little as one to three days – compared with the weeks or months needed to engineer suitable proteins.

Thomson, who also serves as the James Kress Professor of Embryonic Stem Cell Biology at the University of Wisconsin–Madison, a John D. MacArthur professor at UW–Madison’s School of Medicine and Public Health and a professor in the department of molecular, cellular and developmental biology at the University of California, Santa Barbara, says the discovery holds many practical applications.

“With this system, there is the potential to repair any genetic defect, including those responsible for some forms of breast cancer, Parkinson’s and other diseases.”

“Human pluripotent stem cells can proliferate indefinitely and they give rise to virtually all human cell types, making them invaluable for regenerative medicine, drug screening and biomedical research,” Thomson says. “Our collaboration with the Northwestern team has taken us further toward realizing the full potential of these cells because we can now manipulate their genomes in a precise, efficient manner.”

Sontheimer, who serves as the Soretta and Henry Shapiro Research Professor of Molecular Biology with Northwestern’s department of molecular biosciences, Center for Genetic Medicine and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, says the team’s results also offer hopeful signs about the safety of the technique.

“A major concern with previous methods involved inadvertent or off-target cleaving, raising issues about the potential impact in regenerative medicine applications,” he said. “Beyond overcoming the safety obstacles, the system’s ease of use will make what was once considered a difficult project into a routine laboratory technique, catalyzing future research.”

Also contributing to the study, which was supported by funding from sources including the National Institutes of Health, the Wynn Foundation and the Morgridge Institute for Research, were Nicholas Propson, Sara Howden and Li-Fang Chu from the Morgridge Institute for Research.

Jennifer Sereno | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>