Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene regulation: Can we stomach it?

23.02.2010
Max Planck scientists succeed with a novel technique in the fight against the cause of peptic ulcer disease and gastric cancer

A breakthrough in decoding gene regulation of Helicobacter pylori has been made by an international research team led by Jörg Vogel of the Max Planck Institute for Infection Biology in Berlin. Using a newly developed sequencing technique, the re-searchers discovered 60 small ribonucleic acids (sRNAs) - tiny RNA-particles which can regulate genes - in the genome of this human pathogen. These findings could facilitate the development of new therapeutic strategies against this wide-spread pathogen. (Nature, February 17th 2010)


Helicobacter pylori (blue) with cells of the intestinal epithelium (orange). Image: Brinkmann

About 50 percent of the world’s population carry Helicobacter pylori (H. pylori) in their gastrointestinal tract - 30 percent of the German population are infected. Besides cancer, these bacteria are linked to other chronic diseases such as cardiovascular disease. The decoding of the H. pylori genome in 1997 revealed this pathogen to possess surprisingly few genes for transcriptional regulators, sparking a number of crucial questions: Where do the genes of Helicobacter start, and how are these switched on and off? Have all genes been discovered already?

Researchers have been searching for new types of gene regulators in this pathogen, especially for sRNAs. It has recently been realized that these tiny RNA particles are far more abundant in all organisms than previously thought. They can regulate genes by binding to sequences of the genetic information, thereby inhibiting the production of a protein. Yet strangely enough, sRNAs seemed to be lacking in Helicobacter. Jörg Vogel, leader of the RNA Biology Group at the Max Planck Institute for Infection Biology, and his team have finally tracked down a number of sRNAs in the pathogen. To enable their discovery, they modified a technique called "deep sequencing", to decipher millions of RNA-sequences newly produced in a cell. The surprised scientists found 60 sRNAs: "To date, it was believed that this organism completely lacks sRNAs", says Vogel.

A new model for gene regulation?

"We found as many sRNAs in Helicobacter as in widespread intestinal bacteria like Escherichia coli or Salmonella", explains Vogel. But a very important protein required for the regulation of gene expression by sRNAs is missing in Helicobacter pylori. The stomach pathogen possibly uses different signalling pathways, which makes it a possible candidate as a model in RNA-research. "We hope to get completely new insights into gene regulation", says Vogel.

Thanks to the novel technique, the researchers could also define the starting point of every gene in Helicobacter. "It enables us to interpret the genome in a completely new way", explains Vogel. This success, achieved in collaboration with scientists from Leipzig (Germany) and Bordeaux (France), could facilitate the development of a vaccine against the pathogen. Vogel’s team will now apply the new sequencing technique to other food-borne pathogens. Interesting candidates are Campylobacter jejuni, which besides Salmonella is the most frequent cause for infectious diarrhoea.

Original work:

Cynthia M. Sharma, Steve Hoffmann, Fabien Darfeuille, Jérémy Reignier, Sven Findeiß, Alexandra Sittka, Sandrine Chabas, Kristin Reiche, Jörg Hackermüller, Richard Reinhardt, Peter F. Stadler & Jörg Vogel
The primary transcriptome of the major human pathogen Helicobacter pylori
Nature, Februar 17th 2010 online publication (doi: 10.1038/nature08756)
Contact:
Prof. Jörg Vogel
Max Planck Institute for Infection Biology, Berlin
Tel.: +49 (0)30 / 28460-265 / +49 (0)160 / 700-6532
E-mail: vogel@mpiib-berlin.mpg.de
Gesa Krey
Max Planck Institute for Infection Biology, Berlin
Tel.: +49 (0)30 / 28460-206
E-mail: Gesa.Krey@mpiib-berlin.mpg.de

Barbara Abrell | Max Planck Society
Further information:
http://www.mpg.de/english/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>