Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that regulates hair growth identified

15.04.2010
Activation of the gene Lhx2 leads to increased hair growth. This is shown by Leif Carlsson's research team at Umeå University in Sweden in an article in the latest Web edition of the respected scientific journal PLoS Genetics. The findings partly refute earlier research results in the field.

Hair is important for temperature regulation, physical protection, sensory activity, seasonal camouflage, and social interactions. Hair is formed in hair follicles, which are complex mini-organs in the skin that are specialized for this purpose.

All hair follicles are formed during fetal development, then new hair is generated in the hair follicle by continually undergoing phases of recession, rest, and growth throughout life. The length of the hair is determined by the duration of the growth phase; for example, the growth phase for scalp hair can proceed for a number of years, while the growth phase for eyebrows last a few months.

After the growth phase, hair formation ceases, and the follicle recedes and enters a period of rest. After a period of rest, a new growth period starts, and the old hair is ejected and lost from the body. The reason for this complex regulation of hair growth is not understood, but it has been suggested that it makes it possible to adjust hair growth to the season.

In the present study Leif Carlsson's research team identifies the transcription factor Lhx2 as an important regulator of hair formation. The Lhx2 gene is active during the hair follicle's growth phase and is turned off during the resting period. The scientists have been able to show that Lhx2 is functionally involved in the formation of hair, as hair follicles in which Lhx2 has been inactivated cannot produce hair. Moreover, the activation of the Lhx2 gene in hair follicles has been shown to activate the growth phase and hence the formation of hair. Thus, Lhx2 is a gene that is important for the regulation of hair growth.

In stark contrast to previously published research findings from other teams of scientists, Leif Carlsson and his colleagues found that Lhx2 is primarily expressed outside the so-called bulge region of the hair follicle, where the follicle's stem cells are found. The Umeå researchers have also shown that Lhx2 is necessary for the hair follicle's growth (anagen) phase to proceed and for the hair follicle's structuring. Moreover, transgenic expression of Lhx2 after birth is sufficient to activate the growth phase and stimulate hair growth.

These findings allow for an alternative interpretation of the function of Lhx2 in hair follicles compared with previous results. Lhx2 is expressed periodically, primarily in precursor cells that are distinct from the cells in the bulging region of the follicles. It is a factor that is necessary for hair to be formed and to grow.

Article in Plos: Cyclic Expression of Lhx2 Regulates Hair Formation.
Gunilla Törnqvist, Anna Sandberg, Anna-Carin Hägglund, Leif Carlsson
For more information, please contact Professor Leif Carlsson, Umeå Center for Molecular Medicine (UCMM), Umeå University at:

Phone: +46 (0)90-785 44 36 ; Mobile: +46 (0)70-374 79 51 ; E-mail leif.carlsson@ucmm.umu.se

Pressofficer Hans Fällman; hans.fallman@adm.umu.se; +46-70 691 28 29

Hans Fällman | idw
Further information:
http://www.vr.se
http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1000904

More articles from Life Sciences:

nachricht Working the switches for axon branching
26.09.2018 | Max-Planck-Institut für Biochemie

nachricht Diversity in the brain – How millions of neurons become unique
26.09.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Working the switches for axon branching

Our brain is a complex network with innumerable connections between cells. Neuronal cells have long thin extensions, so-called axons, which are branched to increase the number of interactions. Researchers at the Max Planck Institute of Biochemistry (MPIB) have collaborated with researchers from Portugal and France to study cellular branching processes. They demonstrated a novel mechanism that induces branching of microtubules, an intracellular support system. The newly discovered dynamics of microtubules has a key role in neuronal development. The results were recently published in the journal Nature Cell Biology.

From the twigs of trees to railroad switches – our environment teems with rigid branched objects. These objects are so omnipresent in our lives, we barely...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Copper-aluminum superatom

26.09.2018 | Life Sciences

New enclosure gives a boost to electrical engineering companies

26.09.2018 | Trade Fair News

Working the switches for axon branching

26.09.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>