Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene, many mutations

15.03.2013
Researchers show gene controlling coat color in mice mutated nine times, results shed new light on how evolution works

For deer mice living in the Nebraska Sandhills, color can literally be the difference between life and death.

When they first colonized the region, the dark-coated mice stood out starkly against the light-colored, sandy soil, making them easy prey for predators. Over the next 8,000 years, however, the mice evolved a new system of camouflage – lighter coats, changes in the stripe on their tails and changes in the extent of pigment across their body – that allowed them to blend into their new habitat.

Now Harvard researchers are using their example to answer one of the fundamental questions about evolution - is it a process marked by large leaps – single mutations that result in dramatic change in an organism – or is it the result of many smaller changes that accumulate over time?

As described in a March 15 paper in Science, a team of researchers, including former Postdoctoral Fellow Catherine Linnen, now an Assistant Professor at the University of Kentucky, and led by Professor of Organismic and Evolutionary Biology and Molecular and Cellular Biology Hopi Hoekstra, were able to show that the changes in mouse coat color were the result not of a single mutation, but at least nine separate mutations all within a single gene.

"The findings demonstrate how the cumulative effect of natural selection, acting on many small genetic changes, can produce rapid and dramatic change," Linnen, the first author of the paper, said. "This helps us to understand, from a genetic perspective, the uncanny fit between so many organisms and their environments—by acting on many small changes, rather than a handful of large ones, natural selection can produce very finely honed adaptations."

Surprisingly, Hoekstra said, that honing occurred in a single gene.

The role of this gene, called agouti, in camouflage was first discovered by Linnen, Hoekstra and colleagues in 2009, and it is responsible for changes in pigmentation in the coats of many animals. Every domesticated black cat, for example, has a DNA deletion in the gene.

What surprised Hoekstra and her team, however, wasn't that the gene was involved, but that each of the nine mutations were tied to a unique change in the animal's coats, that all the new mutations led to more camouflaging color, and that the mutations occurred in a relatively short, 8,000-year timeframe.

"Essentially, it seems as though these mutations – each of which makes the mouse a little lighter and more camouflaged – have accumulated over time," Hoekstra said.

Focusing on these mutations, researchers then examined the DNA of natural populations of the mice to determine whether the mutations are actually beneficial.

"For each of the mutations associated with color change, we also find a signal that's consistent with positive selection," Hoekstra said. "That implies that each of the specific changes to pigmentation is beneficial. This is consistent with the story we are telling – about how these mutations are fine-tuning this trait."

While the findings offer valuable insight into the way natural selection operates, Hoekstra said they also highlight the importance of following research questions to their ultimate end.

"The question has always been whether evolution is dominated by these big leaps or smaller steps," she said. "When we first implicated the agouti gene, we could have stopped there and concluded that evolution takes these big steps as only one major gene was involved, but that would have been wrong. When we looked more closely, within this gene, we found that even within this single locus, there are, in fact, many small steps."

Going forward, Hoekstra said, her team hopes to understand the order in which the mutations happened, which would allow them to reconstruct how the mice changed over time.

"For evolutionary biologists, this is exciting because we want to learn about the past, but we only have data from the present to study it," she said. "This ability to go back in time and reconstruct an evolutionary path is very exciting, and I think this data set is uniquely suited for this type of time travel."

Taking the time to understand not only which genes are involved, but which specific mutations may be driving natural selection, Hoekstra said, can give researchers a much fuller picture of not only the molecular mechanisms by which mutations alter traits, but also the evolutionary history of an organism as well.

"By doing this we've discovered all kinds of new things," she said. "While we often think about changes happening in the entire genome, our results suggest that even within a very basic unit – the gene – we can see evidence for evolutionary fine-tuning."

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>