Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One gene, many mutations

15.03.2013
Researchers show gene controlling coat color in mice mutated nine times, results shed new light on how evolution works

For deer mice living in the Nebraska Sandhills, color can literally be the difference between life and death.

When they first colonized the region, the dark-coated mice stood out starkly against the light-colored, sandy soil, making them easy prey for predators. Over the next 8,000 years, however, the mice evolved a new system of camouflage – lighter coats, changes in the stripe on their tails and changes in the extent of pigment across their body – that allowed them to blend into their new habitat.

Now Harvard researchers are using their example to answer one of the fundamental questions about evolution - is it a process marked by large leaps – single mutations that result in dramatic change in an organism – or is it the result of many smaller changes that accumulate over time?

As described in a March 15 paper in Science, a team of researchers, including former Postdoctoral Fellow Catherine Linnen, now an Assistant Professor at the University of Kentucky, and led by Professor of Organismic and Evolutionary Biology and Molecular and Cellular Biology Hopi Hoekstra, were able to show that the changes in mouse coat color were the result not of a single mutation, but at least nine separate mutations all within a single gene.

"The findings demonstrate how the cumulative effect of natural selection, acting on many small genetic changes, can produce rapid and dramatic change," Linnen, the first author of the paper, said. "This helps us to understand, from a genetic perspective, the uncanny fit between so many organisms and their environments—by acting on many small changes, rather than a handful of large ones, natural selection can produce very finely honed adaptations."

Surprisingly, Hoekstra said, that honing occurred in a single gene.

The role of this gene, called agouti, in camouflage was first discovered by Linnen, Hoekstra and colleagues in 2009, and it is responsible for changes in pigmentation in the coats of many animals. Every domesticated black cat, for example, has a DNA deletion in the gene.

What surprised Hoekstra and her team, however, wasn't that the gene was involved, but that each of the nine mutations were tied to a unique change in the animal's coats, that all the new mutations led to more camouflaging color, and that the mutations occurred in a relatively short, 8,000-year timeframe.

"Essentially, it seems as though these mutations – each of which makes the mouse a little lighter and more camouflaged – have accumulated over time," Hoekstra said.

Focusing on these mutations, researchers then examined the DNA of natural populations of the mice to determine whether the mutations are actually beneficial.

"For each of the mutations associated with color change, we also find a signal that's consistent with positive selection," Hoekstra said. "That implies that each of the specific changes to pigmentation is beneficial. This is consistent with the story we are telling – about how these mutations are fine-tuning this trait."

While the findings offer valuable insight into the way natural selection operates, Hoekstra said they also highlight the importance of following research questions to their ultimate end.

"The question has always been whether evolution is dominated by these big leaps or smaller steps," she said. "When we first implicated the agouti gene, we could have stopped there and concluded that evolution takes these big steps as only one major gene was involved, but that would have been wrong. When we looked more closely, within this gene, we found that even within this single locus, there are, in fact, many small steps."

Going forward, Hoekstra said, her team hopes to understand the order in which the mutations happened, which would allow them to reconstruct how the mice changed over time.

"For evolutionary biologists, this is exciting because we want to learn about the past, but we only have data from the present to study it," she said. "This ability to go back in time and reconstruct an evolutionary path is very exciting, and I think this data set is uniquely suited for this type of time travel."

Taking the time to understand not only which genes are involved, but which specific mutations may be driving natural selection, Hoekstra said, can give researchers a much fuller picture of not only the molecular mechanisms by which mutations alter traits, but also the evolutionary history of an organism as well.

"By doing this we've discovered all kinds of new things," she said. "While we often think about changes happening in the entire genome, our results suggest that even within a very basic unit – the gene – we can see evidence for evolutionary fine-tuning."

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>