Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Mutation in Worms Key to Alcohol Tolerance

23.10.2008
Scientists at the University of Liverpool have found that a genetic mutation in worms could further understanding of alcoholism in humans.

The work follows a study carried out by Oregon Health and Science University, which suggested a link between a gene mutation in mice and tolerance to alcohol. Researchers at Liverpool have investigated this in worms, looking specifically at the role the gene plays in communication between cells in the nervous system.

This gene specifies the ways in which amino acids arrange themselves into a protein called UNC-18 – or Munc18-1 in humans, an essential component of the nervous system. Researchers found that a naturally occurring change in this gene can result in a change in the nature of one of the amino acids, which then alters communication between cells in the nervous system. As a result of these changes the nervous system becomes less sensitive to the effects of alcohol, allowing the body to consume more.

Professor Bob Burgoyne, Head of the University’s School of Biomedical Sciences, explains: “Alcohol consumption can affect the nervous system in a number of ways. Low concentrations of alcohol can make the body more alert, but high concentrations can also reduce its activity, resulting in motor dysfunction and a lack of coordination. Some people, however, are more susceptible to these effects than others, but it has never been fully understood why this is.

“We used the nematode worm as a model to look at the role genes play in alcohol tolerance because all of the worm’s genome has been characterised and we can therefore identify its genes easily. The gene we looked at corresponds to a gene in humans that performs the same function in the nervous system. Mutations in genes can occur naturally without any known cause and will persist if they are not particularly harmful.”

Dr Jeff Barclay, co-author of the research, added: “We investigated alterations in amino acids in two genetically identical worms. One carried a mutation that was exactly the same as the genetic change our American colleagues found in mice and the other carried a different change within the same gene. Both these mutations altered the way communicate occurs between cells in the nervous system. The mutations reduce the negative behavioural effects of alcohol and so more can be consumed before the body starts to react badly to it.

“Now that we have shown the link between the gene and alcohol tolerance in worms, it is possible to search the human gene to see if there are any spontaneous changes that could help identify individuals with a predisposition to alcoholism.”

The research is published in Molecular Biology of the Cell.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>