Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene helps protect tumor suppressor in breast cancer

08.04.2009
Researchers find Rak regulates PTEN, may work independently as well

Scientists at The University of Texas M. D. Anderson Cancer Center have discovered a gene that protects PTEN, a major tumor-suppressor that is reduced but rarely mutated in about half of all breast cancers.

The gene Rak helps protect and regulate PTEN, which also is important in several other types of cancer, the team reports in the April edition of Cancer Cell. Causes for diminished PTEN protein levels in breast cancer absent a mutation of the PTEN gene have eluded researchers, who knew for several years that a piece of the puzzle was missing.

"We've clearly discovered the missing link that explains how Rak can stabilize PTEN protein to prevent breast cancer development," said lead author Shiaw-Yih Lin, Ph.D., an assistant professor in the Department of Systems Biology at M. D. Anderson. "Our research explains why PTEN is defective in breast cancer and provides important clues for the development of effective therapy in Rak- or PTEN-defective breast cancers."

In addition to breast cancer, PTEN frequently is mutated or inactivated in glioblastoma, melanoma, and cancers of the prostate and endometrium. The severity of PTEN irregularities strongly correlates with the tumor stage and grade. For example, complete loss of PTEN expression is found more frequently in metastatic cancer than in primary tumors.

In the laboratory, researchers found Rak can stabilize PTEN protein and function as a tumor suppressor gene to prevent breast cancer development.

To examine the correlation between Rak and PTEN protein expression, researchers analyzed cells from 42 breast cancers. Rak expression showed a strong positive correlation with PTEN.

They also investigated the effect of Rak expression by injecting mice with cells that over-expressed Rak. All the mice injected with Rak-overexpressing cells remained tumor free, whereas all the control mice developed tumors.

"To further assess whether Rak is a bona fide breast tumor suppressor gene, we sought to determine if loss of Rak expression would transform normal mammary epithelial cells," Lin said. "We injected control cells or cells in which Rak was compromised into the mammary glands of healthy mice and monitored tumor growth. Notably, all the mice injected with Rak-knockdown cells, but none of the mice injected with control cells, developed tumors."

Recent studies have shown that the PTEN protein is destroyed when it is bound by the enzyme NEDD4-1, which attaches targeting molecules called ubiquitins that mark PTEN for destruction by the ubiquitin proteasome complex.

Lin and colleagues showed that Rak saves PTEN from degradation by attaching a phosphate group to the protein, blocking NEDD4-1 from binding to PTEN.

Although this study demonstrates a PTEN-dependent function of Rak, Lin says much research remains ahead on yet-unidentified PTEN-independent functions of Rak in tumor suppression.

"Recently, we found that Rak can prevent spontaneous DNA damage and has a critical role in suppressing cancer stem cells," he said. "So, we will expand our research efforts toward determining how Rak helps to maintain genomic integrity."

PTEN

This work was supported in part by a grant from the National Cancer Institute.

In addition to Lin, other authors on the study included Eun-Kyoung Yim, Ph.D., Guang Peng, M.D., Ph.D., Hui Dai, M.D., Ruozhen Hu, M.S., Yiling Lu, M.D., and Gordon Mills, M.D., Ph.D. of the Department of Systems Biology at M. D. Anderson; Kaiyi Li, Ph.D. of the Department of Surgery at Baylor College of Medicine, Funda Meric-Bernstam, M.D. of the Department of Surgical Oncology at M. D. Anderson; Bryan Hennessy, M.D. of the Department of Gynecologic Medical Oncology at M. D. Anderson; and Rolf Craven, Ph.D. of the Department of Molecular and Biomedical Pharmacology at the University of Kentucky, Lexington.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>