Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression study made easy: Just sequence all of it

08.12.2011
In a new study, researchers have gained new insights into neural disease genes by sequencing virtually all the gene expression in the mouse neural retina.

The technology to obtain such a “transcriptome” has become accessible enough that full-scale sequencing is the preferred method for asking genetics questions.

The population of Eric Morrow’s seminar “Neurogenetics and Disease” comprises mainly undergraduates who were skipping down the halls of their elementary schools when the first drafts of human genome sequences were published. When Morrow, assistant professor of biology, recently asked the class how to find the mutation behind a disease, a hand shot up in the back of the class to signal the answer: “Sequence the patient’s genome.”

Ah, to be 19 and take gene sequencing for granted. Fifteen years ago the student’s answer would have been unthinkable. Five years ago, it would have been possible, but prohibitively expensive and cumbersome.

Now, armed with so-called “next-generation sequencing” technology, which brings the costs down to thousands rather than hundreds of millions of dollars, Morrow and other properly equipped researchers are obtaining detailed and comprehensive genetic sequences of cells from tissues of interest with relative ease.

In a new study, published in the journal Genomics, Morrow led a research group that has for the first time sequenced the entire “transcriptome” — all the messenger RNA transcribed from the DNA that codes proteins — of the mouse neural retina. Morrow’s overall goal is to investigate the genetic nature of disease in neural tissue and sure enough, the research has yielded some intriguing clues, Morrow said. He added that he will publicly share the entire dataset.

“The reason we studied the neural retina is that we wanted to ask: Is there anything different about those genes that cause disease in the nervous system and all of the other genes in the genome,” Morrow said. “There were some fairly prominent differences.”

Insights in the mouse retina

The study team, including first author and postdoctoral scholar Ece Gamsiz, produced four main insights:

Although only 114 of 15,251 genes are known to be associated with disease, the disease genes were disproportionately highly expressed to a statistically significant degree. Six disease genes were among the 20 most highly expressed genes, including a sweep of the top three.

Disease genes also had much longer sequences on average (4,333.4 bases on average, vs. 3,323 for non-disease genes).

Disease genes were somewhat, but significantly, more likely to have alternate transcripts than non-disease genes. This means that there were more different versions in RNA produced from the information encoded in DNA.

Neurons in the retina expressed less than a third of the available genes for their synaptic vesicles, which are essential components for how nerve cells transmit signals.

To Morrow, whose studies include the genetics of autism, the next steps have involved sequencing the transcriptomes of other neural tissues to see whether his observations from the retina are more generally true. For example, are disease-related genes unusually highly expressed elsewhere, too? And do specific neural tissues use a “synaptic vesicle” code, like the retina appears to have, or is this more specific just to retina as well?

Morrow said he’s been sharing his raw transciptome data publicly so that other scientists can ask their own questions.

“When we go to meetings, people ask us about their particular genes in their particular networks,” he said.

Sequencing sensation

Morrow has all but switched methods of genetic analysis. Before sequencing, scientists would use microarrays, which can be stocked with complementary strands of DNA or RNA to detect thousands of genes if they are present in a sample. But for a cost that’s tens of thousands of dollars and dropping, Morrow said, sequencing allows him to see everything in the cell and learn about the entire picture, whether genes were well-known enough to be on a gene chip or not.

“You don’t need to be sitting on a genome center to do this type of work anymore,” Morrow said.

In a similar vein in October, colleagues at Brown and Women & Infants Hospital reported sequencing the transcriptome of human egg cells and, in another first, their sidecar-like “polar bodies.” Their key insight: Expendable polar bodies reflect the gene expression of the precious eggs, making them potentially good, nondestructive indicators of which egg to choose for in vitro fertilization.

Only by seeing all the transcripts of all the genes in the mouse retina, and their full sequences, for example, could Morrow and Gamsiz have learned that disease genes are significantly longer, more likely to be transcribed in different ways, and expressed more abundantly.

“I think expression microarrays are becoming a little outdated,” Morrow said. “Not that we didn’t do well with them. But with them you are missing what you are not looking for because you don’t know what’s out there.”

What makes next-generation sequencing, in this case on an Illumina Genome Analyzer IIx, work better than the slow, labor-intensive and expensive technology used for sequencing just 10 years ago is partly that it sequences a large number of DNA or RNA fragments in parallel, vastly increasing the sequencing system’s throughput.

“The technology is amazing, it’s a game changer,” Morrow said. “In terms of molecular approaches to gene expression, genetics, and genomics it’s like a new day. The data are truly beautiful.”

As that metaphorical first light shines on the mouse retina transcriptome, an improved understanding of the genetics of neural disease may dawn with it.

In addition to Morrow and Gamsiz, other authors on the paper are Qing Ouyang, Michael Schmidt, and Shailender Nagpal.

Support for the research came from the Burroughs Wellcome Fund and Brown University’s Center for Vision Research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>