Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene for dissected leaves

14.02.2014
Arabidopsis thaliana lost the RCO gene over the course of evolution and thus forms simple leaves

Spinach looks nothing like parsley, and basil bears no resemblance to thyme. Each plant has a typical leaf shape that can differ even within the same family. The information about what shape leaves will be is stored in the DNA.


The thale cress has simple oval leaves, the hairy bittercress, in contrast, develops complex leaves with leavelets.

© MPI f. Plant Breeding Research/ Lempe


Thale cress leaves lack the RCO-gene and remain simple (left). In the leaves of the hairy bittercress (middle) the RCO-gene inhibits cell growth between sites of leaflet formation (right; blue: active RCO-gene).

© MPI f. Plant Breeding Research/ Lempe

According to researchers at the Max Planck Institute for Plant Breeding Research in Cologne, the hairy bittercress (Cardamine hirsuta) has a particular gene to thank for its dissected leaves. This homeobox gene inhibits cell proliferation and growth between leaflets, allowing them to separate from each other. The thale cress Arabidopsis thaliana does not have this gene. Therefore, its leaves are not dissected, but simple and entire.

Miltos Tsiantis and his colleagues at the Max Planck Institute for Plant Breeding Research in Cologne discovered the new gene when comparing two plants from the Brassicaceae family: Cardamine hirsuta has dissected leaves that form leaflets and Arabidopsis thaliana has simple leaves. The researchers identified the RCO (REDUCED COMPLEXITY) gene, which makes leaves of the hairy bittercress more complex. Arabidopsis lacks this gene and, accordingly, lacks leaflets. RCO is only active in growing leaves. RCO ensures that cell proliferation and growth is prevented in areas of the leaf margin between sites of leaflet formation. “The leaves of Arabidopsis are simple and entire because growth is not inhibited by the RCO gene,” explains Tsiantis. “If we had not compared the two plants we would never have discovered this difference, as it is impossible to find a gene where none exists,” he adds.

The scientists first identified the RCO gene through a mutation in the hairy bittercress. In the absence of functional RCO the hairy bittercress can no longer produces leaflets. The RCO gene belongs to a cluster of three genes, which arose during evolution through the duplication of a single gene. In the thale cress, the original triple cluster now consists of a single gene. When the scientists return the RCO gene to the thale cress in the laboratory, evolution is partially reversed. “The simple oval leaves of Arabidopsis now develop deep lobes” says Tsiantis, “The fact that the leaf shape becomes complex again through the transfer of the RCO gene alone, shows that most of the apparatus for the formation of leaflets must still be present in the thale cress and was not lost with the RCO gene.”

The research team also examined the RCO sequence in greater detail and found it is a Homeobox gene. These genes function like genetic switches in that they activate or deactivate other genes. The scientists also demonstrated that RCO function is restricted to leaf shape; it does not decide whether leaves actually form. The loss of the RCO gene does not give rise to any other visible changes in the hairy bittercress. Therefore, its effect is limited to the inhibition of growth on the leaf margin. RCO does not work with the plant hormone auxin here. This specificity makes RCO a more likely driver of leaf shape evolution than any other genes identified to date. Tsiantis and his colleagues aim to decode its exact functionality in the months to come.

The scientists also examined the two genes which form a cluster with RCO and which arose in the course of evolution through the duplication of a precursor gene. They wanted to find out how the novel function of RCO in promoting leaf complexity arose. Apparently, the main functional difference lies in the control regions of the genes and not in the protein sequences. The control regions dictate when and how the relevant gene is read. If one or other of the two genes is subjected to the effect of the RCO control region, Arabidopsis makes complex leaves. Thus, the dissected leaves of the hairy bittercress are primarily owed to the control region of the RCO gene.

Contact
Prof. Dr. Miltos Tsiantis
Max Planck Institute for Plant Breeding Research, Köln
Phone: +49 221 5062-106
Fax: +49 221 5062-107
Email: tsiantis@mpipz.mpg.de
Original publication
Daniela Vlad et al.
Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene.

Science, February 14, 2014 (DOI: 10.1126/science.1248384)

Prof. Dr. Miltos Tsiantis | Max-Planck-Institute
Further information:
http://www.mpg.de/7924634/gene_for_plant_leaves_with_leaflets

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>