Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene discovery links obesity to the brain

29.06.2009
Einstein researchers part of international consortium

A variation in a gene that is active in the central nervous system is associated with increased risk for obesity, according to an international study in which Albert Einstein College of Medicine of Yeshiva University played a major role. The research adds to evidence that genes influence appetite and that the brain plays a key role in obesity.

Robert Kaplan, Ph.D., associate professor of epidemiology & population health, helped direct the international study, which involved 34 research institutions and is published online in PLoS Genetics. Dr. Kaplan and his U.S. and European colleagues found that people who have inherited the gene variant NRXN3 have a 10-15 percent increased risk of being obese compared with people who do not have the variant.

The researchers examined data from eight studies involving genes and body weight. These studies included more than 31,000 people of European origin, ages 45 to 76, representing a broad range of dietary habits and health behaviors.

After analyzing more than two million regions of the human genome, the researchers found that the NRXN3 gene variant ─ previously associated with alcohol dependence, cocaine addiction, and illegal substance abuse ─ also predicts the tendency to become obese. Altogether, researchers found the gene variant in 20 percent of the people studied.

"We've known for a long time that obesity is an inherited trait, but specific genes linked to it have been difficult to find," says Dr. Kaplan. "A lot of factors ─ the types and quantity of foods you eat, how much you exercise, and how you metabolize foods, for example ─ affect your body shape and size. So we are looking for genes that may have a small role to play in a complex situation."

NRXN3 is the third obesity-associated gene to be identified. The fact that all three genes are highly active in encoding brain proteins is significant, says Dr. Kaplan. "Considering how many factors are involved in obesity, it is interesting that research is increasingly pointing to the brain as being very important in its development," he said.

Identifying obesity genes could help in preventing the condition and lead to treatments for it. "Someday we may be able to incorporate several obesity genes into a genetic test to identify people at risk of becoming obese and alert them to the need to watch their diet and to exercise," Dr. Kaplan said. "Also, we may eventually see drugs that target the molecular pathways through which obesity genes exert their influence."

Since NRXN3 is active in the brain and also implicated in addiction, these traits may share some neurologic underpinnings. "Although we don't have data to suggest a direct connection between drug abuse and obesity, we can indirectly infer a link because both traits have this gene in common," Dr. Kaplan said.

The paper, "NRXN3 is a Novel Locus for Waist Circumference: A Genome-wide Association Study from the CHARGE Consortium," appears online in PLoS Genetics on June 26th.

Other lead collaborators who worked with Dr. Kaplan on the study included Nancy L. Heard-Costa and L. Adrienne Cupples of Boston University; M. Carola Zillikens, Ben A. Oostra and Cornelia M. van Duijn of Erasmus Medical Center; Keri L. Monda and Kari E. North of the University of North Carolina at Chapel Hill; Åsa Johansson of Uppsala University; Tamara B. Harris and Caroline S. Fox of the National Institutes of Health; Mao Fu and Jeffrey R. O'Connell of the University of Maryland; Talin Haritunians of Cedars-Sinai Medical Center; Mary F. Feitosa and Ingrid B. Borecki of Washington University School of Medicine; and Vilmundur Gudnason of the University of Iceland. Drs. Fox and North are the corresponding authors.

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. It is the home to some 2,000 faculty members, 750 M.D. students, 350 Ph.D. students (including 125 in combined M.D./Ph.D. programs) and 380 postdoctoral investigators. Last year, Einstein received more than $130 million in support from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Through its extensive affiliation network involving five hospital centers in the Bronx, Manhattan and Long Island – which includes Montefiore Medical Center, The University Hospital and Academic Medical Center for Einstein – the College runs one of the largest post-graduate medical training program in the United States, offering approximately 150 residency programs to more than 2,500 physicians in training.

Deirdre Branley | EurekAlert!
Further information:
http://www.aecom.yu.edu

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
16.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>