Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gecko feet hold clues to creating bandages that stick when wet

10.08.2012
Scientists already know that the tiny hairs on geckos’ toe pads enable them to cling, like Velcro, to vertical surfaces. Now, University of Akron researchers are unfolding clues to the reptiles’ gripping power in wet conditions in order to create a synthetic adhesive that sticks when moist or on wet surfaces.
Place a single water droplet on the sole of a gecko toe, and the pad repels the water. The anti-wetting property helps explain how geckos maneuver in rainy tropical conditions. However, saturate that same toe pad in water or drench the surface on which it climbs, and adhesion slips away, the researchers say.

As researcher Alyssa Stark, a doctoral candidate in UA’s Integrated Bioscience Program and research team leader explains, geckos don’t fall from trees during downpours in the tropics. What, then, makes them stick? The team hopes to make that discovery in order to create synthetic materials that hold their grip in wet environments, such as inside the body, for surgical procedures.

A gecko's adhesion is tested on a wet surface.

Findings by Stark, Timothy Sullivan, who received his bachelor’s degree in biology in May, and Peter Niewiarowski, UA professor of biology and integrated bioscience, are published in the August 9, 2012 issue of The Journal of Experimental Biology.

Researchers Alyssa Stark and Tim Sullivan test the adhesion of a geckos feet in water. Their findings may help improve the adhesion of bandages, sutures and similar items in moist environments.

“We’re gathering many clues about how geckos interact with wet surfaces and this gives us ideas of how to design adhesives that work under water,” says Ali Dhinojwala, UA department of polymer science chair and Morton professor of polymer science. “Nature gives us a certain set of rules that point us in the right direction. They help us understand limitations and how to manipulate materials.”

Stark and her research team members tested gecko toe hair adhesion in a series of scenarios: dry toe pads on dry, misted and wet surfaces and soaked toe pads on dry, misted and wet glass. The soaked toe pads demonstrated low to no adhesion proportionately with the wetness of the surface on which they were applied and pulled. Likewise, dry toe pads lost their adhesive grip increasingly with the amount of water applied to the surface upon which they were pulled. For the experiments, geckos were pulled on a glass surface by way of a small, gentle harness placed around their midsections.

“There were anecdotes before the study that geckos can’t stick to wet glass. We now know it is a bit more complicated than that. What we expect to learn is going to be relevant to synthetics and ther capabilities to work not only on dry surfaces, but also wet and maybe, submerged ones,” Niewiarowski says. “This implies a more versatile adhesive capability.”

Gecko-inspired dry adhesive

After close study of the tiny hairs at the bottom of gecko feet that enable them to cling to surfaces, Dhinojwala and his colleagues have already developed a dry synthetic adhesive, comprised of carbon nanotubes, that outperforms nature’s variety. Now, with these new findings, Dhinojwala and his colleagues are one step closer to unfolding the secrets behind gecko toe adhesion in wetness.

The researchers plan to further study the lizards in their natural habitats and in laboratory conditions that simulate them. They’ll investigate grasping and release mechanisms, habits of the geckos in wet environments and other factors that enable the lizards to adhere to surfaces in wetness, such as to trees during rainfalls.

“Our goal is to go back and look at what they’re doing in nature and at what kind of surfaces they are walking or running on,” says Stark, noting that UA researchers have already studied such behavior of geckos in Tahiti.

Laura Massie | EurekAlert!
Further information:
http://www.uakron.edu

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>