Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gearing-up for spring

31.01.2011
Rapid activation of specific genes readies the mammalian body for seasonal change

The genes that regulate the process called photoperiodism—the seasonal responses induced in organisms by changing day length—have been found by researchers from the RIKEN Center for Developmental Biology, Kobe, and Kinki University, Osaka.

Led by Koh-hei Masumoto and Hiroki R. Ueda from RIKEN, the researchers also discovered how these genes can be activated within a single day[1]. The work bears relevance to seasonal human disorders, such as winter depression, and symptoms associated with conditions such as bipolar disease.

Organisms need to alter body functions and behavior to accommodate seasonal changes in their environment (Fig. 1). The measurement of day length is one obvious way of determining the time of year. To this end, the body uses its internal circadian clock, and against this background measures the extent and timing of light and dark.

The team noted that an increase in day length induces activity in the gene for thyroid stimulating hormone beta (TSHâ) in the pars tuberalis (PT) region of the pituitary gland. TSHâ plays a key role in the pathway that regulates photoperiodism in vertebrate animals. However, the detailed mechanism that links information about day length with induction of the production of TSHâ is unknown.

Masumoto, Ueda and colleagues found the genes that stimulate the activity of the TSHâ gene in mammals by observing the activity of genes in the PT of photoperiod-responsive mice under chronic ’short-day’ (eight hours of light) and ‘long-day’ (16 hours) conditions. They identified 57 genes stimulated by short days and 246, including TSHâ, by long days.

Then, the researchers placed chronic short-day mice into a long-day regime—they switched off the lights eight hours later—and observed that it took five days for TSHâ to become fully active. They could, however, stimulate full activity of TSHâ within a single 24-hour period if they subjected the mice to a short burst of light during a sensitive ‘photo-inducible’ period late at night. Thirty-four other long-day genes responded in the same way, including the transcription factor, Eya3, which seemed a likely candidate for regulating TSHâ activity. In laboratory studies, the researchers determined that Eya3 and its partner binding factor Six1 do indeed act together to activate TSHâ. And this activity is enhanced by two other genes, Tef and Hlf.

“We are next planning to identify the upstream gene of Eya3,” Ueda says. “And we are also hoping to elucidate why the photo-inducible phase is late at night.”

The corresponding author for this highlight is based at the Laboratory for Systems Biology, RIKEN Center for Developmental Biology

Journal information

[1] Masumoto, K., Ukai-Tadenuma, M., Kasukawa, T., Nagano, M., Uno, K.D., Tsujino, K., Horikawa, K., Shigeyoshi, Y. & Ueda, H.R. Acute induction of Eya3 by late-night light stimulation triggers TSHâ expression in photoperiodism. Current Biology 20, 2199–2206 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6510
http://www.researchsea.com

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>