Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GARP makes the difference

17.06.2009
Researchers develop key brake for immune cells in petri dish -- hope for easier organ transplantation?

Scientists from the Helmholtz Center for Infection Research in Braunschweig, Germany and the Medical School Hannover, Germany have succeeded in treating immune cells in a way that enables them to inhibit unwanted immune reactions such as organ rejection. Their results have now been published in the current issue of the scientific journal Journal of Cellular and Molecular Medicine.

The immune system keeps us healthy: day and night it protects us against invading and harmful pathogens. But this fulltime surveillance can also turn into a problem, for example after an organ transplant. The immune system recognizes the new organ as "foreign" and starts fighting it. In the end, the life-saving transplant will be rejected. Until now, only special drugs have managed to keep the immune system silent and thus inhibit organ rejection.

Theoretically, these drugs are not necessary because the immune system has its own unique "peace makers": regulatory T cells (Tregs), a special group of helper T cells, an important cell type of the immune system. Tregs inhibit immune reactions and are thus of special medical interest. Until now, distinguishing between Tregs and helper T cells has represented a problem for scientists. Now, in co-operation with the Medical School Hannover, researchers from the Helmholtz Centre for Infection Research in Braunschweig have identified a molecular factor that plays an essential role in Treg function. This protein constitutes the key difference between Tregs and helper T cells. Furthermore, the scientists have also generated Tregs from helper T cells that permanently maintained their characteristics.

The key to Tregs is called "GARP". Michael Probst-Kepper is a researcher in a junior research group that is financed by the German Volkswagen foundation, he works at both HZI and MHH. He has now deciphered the special role of the GARP protein. Until now, scientists had only little distinguishing features to aid them in separating T cells that trigger a transplant rejection from those that inhibit such a reaction: they mainly looked at molecular features that both cell types have – the one more, the other less. "It's like looking at two cars that appear to be the same. Except that one is capable of driving while the other doesn't drive anymore. But you cannot see that from the outside," says Michael Probst-Kepper. He deciphered the role of GARP: this new-found factor only exists in Tregs and initiates a complex network of various molecules. "If you don't want a car to drive anymore, you pull the key out and cut the petrol pipe. GARP does the same: it prevents Tregs from stepping on the gas."

The scientist artificially inserted GARP into those T cells that start an immune reaction against transplants. The result was a substantial advance for medicine: the transplant-rejecting T cells developed permanently into Tregs – those cells that inhibit the activation of aggressive T cells and thus prevent organ rejection. Furthermore, the researchers also furnished the counter evidence: Michael Probst-Kepper muted the GARP gene in Tregs. As a result, the Tregs lost their "peace making" characteristics. "The cells could start driving again," he says. "With this study we were able to show the complexity of the Treg system for the first time, developing a powerful tool for medicine to develop new therapies and drugs."

Article: GARP: a key receptor controlling FOXP3 in human regulatory T cells. Probst-Kepper M, Geffers R, Kröger A, Viegas N, Erck C, Hecht HJ, Luensdorf H, Roubin R, Moharregh-Khiabani D, Wagner K, Ocklenburg F, Jeron A, Garritsen H, Arstila TP, Kekaelaeinen E, Balling R, Hauser H, Buer J, Weiss S. J Cell Mol Med. 2009 May 13. [Epub ahead of print]

Dr. Bastian Dornbach | EurekAlert!
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht Princeton researchers explore how a carbon-fixing organelle forms via phase separation
13.09.2019 | Princeton University

nachricht The working of a molecular string phone
13.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>