Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gaining Insight Into a Gene's Protective Role in Parkinson’s

08.02.2012
Treatments for Parkinson’s disease, estimated to affect 1 million Americans, have yet to prove effective in slowing the progression of the debilitating disease.

However, University of Alabama researchers have identified how a specific gene protects dopamine-producing neurons from dying in both animal models and in cultures of human neurons, according to a scientific article publishing in the Feb. 8 edition of The Journal of Neuroscience.

This increased understanding of the gene’s neuro-protective capability is, the researchers said, another step toward the potential development of a new drug treatment.

“This gene represents a previously unexplored protein therapeutic target for Parkinson’s disease,” said Dr. Guy Caldwell, professor of biological sciences at The University of Alabama and a co-author of the article.

The gene, known as VPS41, was one of five genes that UA scientists showed in 2008 had protective capabilities against a hallmark trait of Parkinson’s, the age-associated loss of dopamine neurons. The latest announcement reflects the better understanding since gained of how the gene functions.

The latest UA research was primarily funded by the Michael J. Fox Foundation for Parkinson’s Research. The scientific journal, published by the Society of Neuroscience, is the largest weekly journal dedicated to neuroscience discovery.

The researchers also found that specific, and rare changes in human DNA – changes sometimes also evident in non-Parkinson’s patients – appear to impact how VPS41 functions.

“Mutations like these may represent previously unreported susceptibility factors for Parkinson’s disease,” Caldwell said.

The article’s lead author is Dr. Adam Harrington, who earned his doctoral degree from UA in December 2011 while working in the Caldwell Lab. The additional UA co-author is Dr. Kim Caldwell, associate professor of biological sciences. Dr. Talene Yacoubian, a physician, and Sunny Slone, both of the University of Alabama at Birmingham, are also co-authors.

The researchers used both specific strains of tiny nematode worms as animal models for the work along with the human cultures.

The genetically engineered worms contain a human protein, alpha-synuclein within their cells. Scientists have learned that people with too many copies of the code for alpha-synuclein within their DNA will contract Parkinson’s.

Extra copies of alpha-synuclein can lead to repeated protein misfolding and the death of the dopamine-producing neurons in the brain. In Parkinson’s patients, the death of these neurons leads to rigid and tremoring limbs, difficulty in movement and impaired reflexes.

“The main advance here is that we have mechanistically defined how VPS41 appears to convey its protective capacity to neurons – not only in worms, but also in human dopamine-producing neuron cultures,” said Caldwell.

The next phase in this research involves translating these findings into potential therapies.

“The obstacles of finding any disease-modifying therapy are diminished once protective mechanisms, like this one, become revealed and better defined,” said Caldwell.

Chris Bryant | Newswise Science News
Further information:
http://www.ua.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>