Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusion protein controls design of photosynthesis platform

13.05.2015

Collaborative project uncovers the role of a protein in the formation and maintenance of the inner membrane structures of photosynthetic systems

Chloroplasts are the solar cells of plants and green algae. In a process called photosynthesis, light energy is used to produce biochemical energy and the oxygen we breathe. Thus, photosynthesis is one of the most important biological processes on the planet.


An IM30 ring docks with internal membranes. In the background is part of an image of a blue-green alga prepared using an electron microscope. A 3D model of the IM30 ring can be seen in the foreground. The images are not to scale.

Source: Dirk Schneider and Jürgen Markl

A central part of photosynthesis takes place in a specialized structure within chloroplasts, the thylakoid membrane system. Despite its apparent important function, until now it was not clear how this specialized internal membrane system is actually formed.

In a collaborative project, researchers at Johannes Gutenberg University Mainz (JGU) in Germany have now identified how this membrane is generated. According to their findings, a protein called IM30 plays a major role by triggering the fusion of internal membranes. The study elucidating the role of IM30 involved biologists, chemists, biochemists, and biophysicists at Mainz University and the Max Planck Institute for Polymer Research. Their results have recently been published in the journal Nature Communications.

Chloroplasts are organelles found in higher plants and green algae. They contain an internal membrane system, so-called thylakoid membranes, where the key processes of photosynthesis take place. "A detailed understanding of photosynthesis and the associated molecular processes is essential to properly comprehend life on our planet," emphasized Professor Dirk Schneider of the Institute of Pharmaceutical Sciences and Biochemistry at JGU, who coordinated the study.

"Despite the significance of the process, we know almost nothing about how these special membranes are formed and maintained." It had not previously been possible to identify a single fusion-mediating protein in photosynthetic cells, even though it was perfectly clear that such proteins have to be involved in the development of thylakoid membranes.

With this in mind, the Mainz-based research team isolated and investigated the protein IM30 from a blue-green alga, which might be classified as a "free-living chloroplast." IM30 – the "IM" stands for "internal membrane" while 30 is its atomic mass (30 kilodaltons) – was first described in the mid-1990s and it was demonstrated that it binds to internal membranes.

Thanks to the combined expertise of the teams headed by Professor Dirk Schneider, Professor Jürgen Markl of the JGU Institute of Zoology, and Professor Tobias Weidner of the Max Planck Institute for Polymer Research it has now emerged that IM30 forms a ring structure that specifically interacts with phospholipids of the membranes.

"This binding alters the membrane structure and under certain conditions can lead to membrane fusion," explained Schneider. In absence of IM30, thylakoid membranes are noticeably deteriorated, which can subsequently lead to loss of cell viability. The IM30 fusion protein provides a starting point for future research, unraveling new types of membrane fusion mechanisms in chloroplasts and blue-green algae.

The interdisciplinary research project was primarily undertaken by doctoral candidates at the Max Planck Graduate Center (MPGC). The MPGC was founded in June 2009 to support joint projects and shared doctorates at Johannes Gutenberg University Mainz and the Max Planck Institutes for Polymer Research and for Chemistry, both of which are based in Mainz.

Publication:
Raoul Hennig et al.
IM30 triggers membrane fusion in cyanobacteria and chloroplasts
Nature Communications, 8. Mai 2015
DOI: 10.1038/ncomms8018

Further information:
Professor Dr. Dirk Schneider
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25833
fax +49 6131 39-25348
e-mail: dirk.schneider@uni-mainz.de
http://www.bio.chemie.uni-mainz.de/46.php

Weitere Informationen:

http://www.uni-mainz.de/presse/18298_ENG_HTML.php - press release ;
http://www.bio.chemie.uni-mainz.de/46.php – Prof. Dirk Schneider ;
http://www.bio.uni-mainz.de/zoo/312_DEU_HTML.php – Prof. Jürgen Markl ;
http://www.mpip-mainz.mpg.de/~weidner – Prof. Tobias Weidner ;
http://www.nature.com/naturecommunications – Nature Communications

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>