Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Funnel" attracts bonding partners to biomolecule

24.09.2014

Water movement as detection aid for molecules

RESOLV combines terahertz spectroscopy and simulation

Water is a ubiquitous solvent in all life sciences – sometimes referred to as the "matrix of life". Contrary to earlier assumptions, it is not a passive witness of biochemical processes; rather, it participates in them actively.

By influencing the movement of water molecules surrounding their binding pockets, proteins can create a type of “funnel” in the surrounding water, which assists the bonding of certain binding partners that are solvated in water.

Valeria Conti Nibali and Prof Dr Martina Havenith-Newen (Cluster of Excellence RESOLV – Ruhr explores Solvation) made this discovery by using a combination of terahertz absorption spectroscopy and molecular dynamics simulations. The researchers report their findings in the Journal of the American Chemical Society (JACS).


Schematic diagram of the hydration funnel in an enzyme-substrate complex (the protein is depicted in grey, its binding partner in green, and the funnel in yellow).

© Havenith/Conti Nibali

Choreography of water movements

New experimental technologies, such as terahertz absorption spectroscopy, pave the way for studies of the dynamics of water molecules surrounding biomolecules. Using this method, the researchers proved some time ago that proteins influence water molecules in their surroundings: they determine the choreography of their movements. This effect occurs not only in the immediate vicinity of the protein, but can also be detected in the remote layers of the surrounding water molecules.

Collective interaction helps choose binding partner

But what purpose would such an interaction have? The researchers have come closer to finding an answer to this question by employing molecular dynamics simulations. It was demonstrated that the movement of water molecules in the vicinity of the protein’s active centre, the so-called binding pocket, is connected to potential binding partners in the water solvent.

"This movement causes the water molecules to form a hydration funnel of sorts, making up part of the molecular recognition mechanism in both partners," explains Prof Dr Martina Havenith-Newen. Moreover, the movements of the water molecules have proved to be specific for certain binding partners.

Thus, if there are different potential binding candidates in the solvent, all competing to bind to the protein, these collective water movements are thought to assist binding.To conclude, such correlated water movements could support the interaction of biomolecules like enzymes and proteins with their binding partners and play a significant role in their mutual recognition, allowing the biomolecule to select or reject certain binding partners.

Cluster of Excellence RESOLV

The project was carried out under the auspices of the Cluster of Excellence RESOLV – Ruhr explores Solvation (ECX 1069), supported by the German Research Foundation.

Title catalogue

V. Conti Nibali, M. Havenith (2014): New Insights into the Role of Water in Biological Function: Studying Solvated Biomolecules Using Terahertz Absorption Spectroscopy in Conjunction with Molecular Dynamics Simulations, JACS, 10.1021/ja504441h

Meike Drießen | Eurek Alert!

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>